Decision Support A parallel multiple reference point approach for multi-objective optimization

a CEG-IST, Center for Management Studies, Instituto Superior Técnico, Technical University of Lisbon, Tagus Park, Av. Cavaco Silva, 2780-990 Porto Salvo, Portugal b LAMSADE, UMR CNRS 7024, Université Paris-Dauphine, Place du Maréchal De Lattre de Tassigny, 75775 Paris Cedex, France c Université Lille 1, LIFL – CNRS, INRIA Lille-Nord Europe, Parc Scientifique de la Haute Borne, 40 av. Halley, 59650 Villeneuve d’Ascq, France d King Saud University, Riyadh, Saudi Arabia e National Institute of Telecommunications, Szachowa Str. 1, 04-894 Warsaw, Poland

[1]  El-Ghazali Talbi,et al.  Combinatorial Optimization of Stochastic Multi-objective Problems: An Application to the Flow-Shop Scheduling Problem , 2007, EMO.

[2]  Kalyanmoy Deb,et al.  Towards estimating nadir objective vector using evolutionary approaches , 2006, GECCO.

[3]  A. P. Wierzbicki,et al.  Application of multiple criteria evolutionary algorithms to vector optimisation, decision support and reference point approaches , 2003 .

[4]  Sanja Petrovic,et al.  An Introduction to Multiobjective Metaheuristics for Scheduling and Timetabling , 2004, Metaheuristics for Multiobjective Optimisation.

[5]  Yeong-Dae Kim Minimizing total tardiness in permutation flowshops , 1995 .

[6]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems , 2002, Genetic Algorithms and Evolutionary Computation.

[7]  Kalyanmoy Deb,et al.  A Fast Elitist Non-dominated Sorting Genetic Algorithm for Multi-objective Optimisation: NSGA-II , 2000, PPSN.

[8]  A. Nagar,et al.  Multiple and bicriteria scheduling : A literature survey , 1995 .

[9]  Andrzej P. Wierzbicki,et al.  The Use of Reference Objectives in Multiobjective Optimization , 1979 .

[10]  Marco Laumanns,et al.  PISA: A Platform and Programming Language Independent Interface for Search Algorithms , 2003, EMO.

[11]  Mitsuo Gen,et al.  Specification of Genetic Search Directions in Cellular Multi-objective Genetic Algorithms , 2001, EMO.

[12]  Carlos A. Coello Coello,et al.  g-dominance: Reference point based dominance for multiobjective metaheuristics , 2009, Eur. J. Oper. Res..

[13]  Hisao Ishibuchi,et al.  A multi-objective genetic local search algorithm and its application to flowshop scheduling , 1998, IEEE Trans. Syst. Man Cybern. Part C.

[14]  E. Talbi,et al.  A Unified Model for Evolutionary Multiobjective Optimization and its Implementation in a General Purpose Software Framework: ParadisEO-MOEO , 2009, 0904.2987.

[15]  Jin-Kao Hao,et al.  Evolutionary Multi-Criterion Optimization, 5th International Conference, EMO 2009, Nantes, France, April 7-10, 2009. Proceedings , 2009, EMO.

[16]  Jan Karel Lenstra,et al.  Complexity of machine scheduling problems , 1975 .

[17]  Marc Despontin,et al.  Multiple Criteria Optimization: Theory, Computation, and Application, Ralph E. Steuer (Ed.). Wiley, Palo Alto, CA (1986) , 1987 .

[18]  Éric D. Taillard,et al.  Benchmarks for basic scheduling problems , 1993 .

[19]  Qingfu Zhang,et al.  MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition , 2007, IEEE Transactions on Evolutionary Computation.

[20]  E.L. Lawler,et al.  Optimization and Approximation in Deterministic Sequencing and Scheduling: a Survey , 1977 .

[21]  El-Ghazali Talbi,et al.  ParadisEO: A Framework for the Reusable Design of Parallel and Distributed Metaheuristics , 2004, J. Heuristics.

[22]  Joseph Y.-T. Leung,et al.  Minimizing Total Tardiness on One Machine is NP-Hard , 1990, Math. Oper. Res..

[23]  S. M. Johnson,et al.  Optimal two- and three-stage production schedules with setup times included , 1954 .

[24]  Lothar Thiele,et al.  A Tutorial on the Performance Assessment of Stochastic Multiobjective Optimizers , 2006 .

[25]  K. Miettinen,et al.  Incorporating preference information in interactive reference point methods for multiobjective optimization , 2009 .

[26]  Francisco Ruiz,et al.  A classification of the weighting schemes in reference point procedures for multiobjective programming , 2009, J. Oper. Res. Soc..

[27]  Rubén Ruiz,et al.  A Review and Evaluation of Multiobjective Algorithms for the Flowshop Scheduling Problem , 2008, INFORMS J. Comput..

[28]  Lothar Thiele,et al.  A Preference-Based Evolutionary Algorithm for Multi-Objective Optimization , 2009, Evolutionary Computation.

[29]  Eckart Zitzler,et al.  Indicator-Based Selection in Multiobjective Search , 2004, PPSN.