Decision Support A parallel multiple reference point approach for multi-objective optimization
暂无分享,去创建一个
A. P. Wierzbicki | J. R. Figueira | E. Talbi | A. Liefooghe | J. Figueira | A. Wierzbicki | E.-G. Talbi | A. Liefooghe
[1] El-Ghazali Talbi,et al. Combinatorial Optimization of Stochastic Multi-objective Problems: An Application to the Flow-Shop Scheduling Problem , 2007, EMO.
[2] Kalyanmoy Deb,et al. Towards estimating nadir objective vector using evolutionary approaches , 2006, GECCO.
[3] A. P. Wierzbicki,et al. Application of multiple criteria evolutionary algorithms to vector optimisation, decision support and reference point approaches , 2003 .
[4] Sanja Petrovic,et al. An Introduction to Multiobjective Metaheuristics for Scheduling and Timetabling , 2004, Metaheuristics for Multiobjective Optimisation.
[5] Yeong-Dae Kim. Minimizing total tardiness in permutation flowshops , 1995 .
[6] Gary B. Lamont,et al. Evolutionary Algorithms for Solving Multi-Objective Problems , 2002, Genetic Algorithms and Evolutionary Computation.
[7] Kalyanmoy Deb,et al. A Fast Elitist Non-dominated Sorting Genetic Algorithm for Multi-objective Optimisation: NSGA-II , 2000, PPSN.
[8] A. Nagar,et al. Multiple and bicriteria scheduling : A literature survey , 1995 .
[9] Andrzej P. Wierzbicki,et al. The Use of Reference Objectives in Multiobjective Optimization , 1979 .
[10] Marco Laumanns,et al. PISA: A Platform and Programming Language Independent Interface for Search Algorithms , 2003, EMO.
[11] Mitsuo Gen,et al. Specification of Genetic Search Directions in Cellular Multi-objective Genetic Algorithms , 2001, EMO.
[12] Carlos A. Coello Coello,et al. g-dominance: Reference point based dominance for multiobjective metaheuristics , 2009, Eur. J. Oper. Res..
[13] Hisao Ishibuchi,et al. A multi-objective genetic local search algorithm and its application to flowshop scheduling , 1998, IEEE Trans. Syst. Man Cybern. Part C.
[14] E. Talbi,et al. A Unified Model for Evolutionary Multiobjective Optimization and its Implementation in a General Purpose Software Framework: ParadisEO-MOEO , 2009, 0904.2987.
[15] Jin-Kao Hao,et al. Evolutionary Multi-Criterion Optimization, 5th International Conference, EMO 2009, Nantes, France, April 7-10, 2009. Proceedings , 2009, EMO.
[16] Jan Karel Lenstra,et al. Complexity of machine scheduling problems , 1975 .
[17] Marc Despontin,et al. Multiple Criteria Optimization: Theory, Computation, and Application, Ralph E. Steuer (Ed.). Wiley, Palo Alto, CA (1986) , 1987 .
[18] Éric D. Taillard,et al. Benchmarks for basic scheduling problems , 1993 .
[19] Qingfu Zhang,et al. MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition , 2007, IEEE Transactions on Evolutionary Computation.
[20] E.L. Lawler,et al. Optimization and Approximation in Deterministic Sequencing and Scheduling: a Survey , 1977 .
[21] El-Ghazali Talbi,et al. ParadisEO: A Framework for the Reusable Design of Parallel and Distributed Metaheuristics , 2004, J. Heuristics.
[22] Joseph Y.-T. Leung,et al. Minimizing Total Tardiness on One Machine is NP-Hard , 1990, Math. Oper. Res..
[23] S. M. Johnson,et al. Optimal two- and three-stage production schedules with setup times included , 1954 .
[24] Lothar Thiele,et al. A Tutorial on the Performance Assessment of Stochastic Multiobjective Optimizers , 2006 .
[25] K. Miettinen,et al. Incorporating preference information in interactive reference point methods for multiobjective optimization , 2009 .
[26] Francisco Ruiz,et al. A classification of the weighting schemes in reference point procedures for multiobjective programming , 2009, J. Oper. Res. Soc..
[27] Rubén Ruiz,et al. A Review and Evaluation of Multiobjective Algorithms for the Flowshop Scheduling Problem , 2008, INFORMS J. Comput..
[28] Lothar Thiele,et al. A Preference-Based Evolutionary Algorithm for Multi-Objective Optimization , 2009, Evolutionary Computation.
[29] Eckart Zitzler,et al. Indicator-Based Selection in Multiobjective Search , 2004, PPSN.