PerformanceLimitations inReference-Tracking and Path-Following forNonlinear Systems

We investigate limits of performance in reference-tracking and path-following and highlight an essential difference between them. For a class of nonlinear systems, we show that in reference-tracking, the smallest achievable L2 norm of the tracking error is equal to the least amount of control energy needed to stabilize the zero-dynamics of the error system. We then show that this fundamental performance limitation does not exist when the control objective is to force the output to follow a geometric path without a timing law assigned to it. This is true even when an additional desired speed assignment is required to be satisfied asymptotically or in finite time.

[1]  Petar V. Kokotovic,et al.  Path-following for a class of nonlinear systems with unstable zero dynamics , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[2]  Joao P. Hespanha,et al.  Logic-based switching control for trajectory-tracking and path-following of underactuated autonomous vehicles with parametric modeling uncertainty , 2004, Proceedings of the 2004 American Control Conference.

[3]  A. Isidori,et al.  Output regulation of nonlinear systems , 1990 .

[4]  Roger Skjetne,et al.  Robust output maneuvering for a class of nonlinear systems , 2004, Autom..

[5]  Julio H. Braslavsky,et al.  Cheap control performance of a class of nonright-invertible nonlinear systems , 2002, IEEE Trans. Autom. Control..

[6]  Arthur J. Krener The Construction of Optimal Linear and Nonlinear Regulators , 1992 .

[7]  Arthur J. Krener,et al.  The Local Solvability of a Hamilton--Jacobi--Bellman PDE around a Nonhyperbolic Critical Point , 2000, SIAM J. Control. Optim..

[8]  Edward J. Davison,et al.  Performance limitations of non-minimum phase systems in the servomechanism problem, , 1993, Autom..

[9]  Richard H. Middleton,et al.  Cheap control tracking performance for non-right-invertible systems , 2002 .

[10]  D. Mayne Nonlinear and Adaptive Control Design [Book Review] , 1996, IEEE Transactions on Automatic Control.

[11]  David Q. Mayne,et al.  Feedback limitations in nonlinear systems: from Bode integrals to cheap control , 1999, IEEE Trans. Autom. Control..

[12]  Li Qiu,et al.  Limitations on maximal tracking accuracy , 2000, IEEE Trans. Autom. Control..

[13]  Joao P. Hespanha,et al.  Path-following or reference tracking? , 2004 .

[14]  John R. Hauser,et al.  Maneuver Regulation from Trajectory Tracking: Feedback Linearizable Systems * , 1995 .

[15]  Rick H. Middleton,et al.  Trade-offs in linear control system design , 1991, Autom..

[16]  B. Francis The linear multivariable regulator problem , 1976, 1976 IEEE Conference on Decision and Control including the 15th Symposium on Adaptive Processes.

[17]  E. Davison The robust control of a servomechanism problem for linear time-invariant multivariable systems , 1976 .

[18]  João Pedro Hespanha,et al.  Path-following for nonminimum phase systems removes performance limitations , 2005, IEEE Transactions on Automatic Control.

[19]  Li Qiu,et al.  Fundamental performance limitations in tracking sinusoidal signals , 2003, IEEE Trans. Autom. Control..

[20]  Petar V. Kokotovic,et al.  PATH-FOLLOWING FOR LINEAR SYSTEMS WITH UNSTABLE ZERO DYNAMICS , 2005 .

[21]  N. Harris McClamroch,et al.  Tracking and maneuver regulation control for nonlinear nonminimum phase systems: application to flight control , 2002, IEEE Trans. Control. Syst. Technol..

[22]  A. Isidori Nonlinear Control Systems , 1985 .

[23]  Bruce A. Francis,et al.  The internal model principle of control theory , 1976, Autom..

[24]  H. Kwakernaak,et al.  The maximally achievable accuracy of linear optimal regulators and linear optimal filters , 1972 .