Phosphoproteomic of the acetylcholine pathway enables discovery of the PKC-β-PIX-Rac1-PAK cascade as a stimulatory signal for aversive learning

[1]  Anastasios V. Tzingounis,et al.  Muscarinic signaling regulates voltage‐gated potassium channel KCNQ2 phosphorylation in the nucleus accumbens via protein kinase C for aversive learning , 2021, Journal of neurochemistry.

[2]  Stephen R. Morairty,et al.  From structure to clinic: Design of a muscarinic M1 receptor agonist with the potential to treat Alzheimer’s disease , 2021, Cell.

[3]  A. Yamanaka,et al.  Accumbal D2R-medium spiny neurons regulate aversive behaviors through PKA-Rap1 pathway , 2020, Neurochemistry International.

[4]  K. Kaibuchi,et al.  Phosphorylation of Npas4 by MAPK Regulates Reward-Related Gene Expression and Behaviors. , 2019, Cell reports.

[5]  J. Graham,et al.  De novo variants in PAK1 lead to intellectual disability with macrocephaly and seizures , 2019, Brain : a journal of neurology.

[6]  K. Kaibuchi,et al.  Comprehensive analysis of kinase-oriented phospho-signalling pathways. , 2019, Journal of biochemistry.

[7]  K. Kaibuchi,et al.  In Vivo Identification of Protein Kinase Substrates by Kinase‐Oriented Substrate Screening (KIOSS) , 2019, Current protocols in chemical biology.

[8]  J. Yoshimoto,et al.  Balance between dopamine and adenosine signals regulates the PKA/Rap1 pathway in striatal medium spiny neurons , 2019, Neurochemistry International.

[9]  A. Silahtaroglu,et al.  The DLGAP family: neuronal expression, function and role in brain disorders , 2017, Molecular Brain.

[10]  J. Yoshimoto,et al.  Phosphorylation Signals in Striatal Medium Spiny Neurons. , 2016, Trends in pharmacological sciences.

[11]  Dara L. Dickstein,et al.  Automatic Dendritic Spine Quantification from Confocal Data with Neurolucida 360 , 2016, Current protocols in neuroscience.

[12]  Masahiko Watanabe,et al.  Phosphoproteomics of the Dopamine Pathway Enables Discovery of Rap1 Activation as a Reward Signal In Vivo , 2016, Neuron.

[13]  R. Huganir,et al.  Regulation of AMPA receptor subunit GluA1 surface expression by PAK3 phosphorylation , 2015, Proceedings of the National Academy of Sciences.

[14]  K. Kaibuchi,et al.  Developing novel methods to search for substrates of protein kinases such as Rho-kinase. , 2015, Biochimica et biophysica acta.

[15]  S. Nakanishi,et al.  Distinct dopaminergic control of the direct and indirect pathways in reward-based and avoidance learning behaviors , 2014, Neuroscience.

[16]  Daniel S. McGehee,et al.  Striatal cholinergic interneuron regulation and circuit effects , 2014, Front. Synaptic Neurosci..

[17]  Kenneth M. Yamada,et al.  An extracellular matrix-specific GEF-GAP interaction regulates Rho GTPase crosstalk for 3D collagen migration , 2014, Nature Cell Biology.

[18]  K. Yoshino,et al.  The Role of Pak-Interacting Exchange Factor-β Phosphorylation at Serines 340 and 583 by PKCγ in Dopamine Release , 2014, The Journal of Neuroscience.

[19]  Kazuto Kobayashi,et al.  Enhanced flexibility of place discrimination learning by targeting striatal cholinergic interneurons , 2014, Nature Communications.

[20]  J. Chernoff,et al.  PAK signalling during the development and progression of cancer , 2013, Nature Reviews Cancer.

[21]  S. Tonegawa,et al.  Rescue of fragile X syndrome phenotypes in Fmr1 KO mice by the small-molecule PAK inhibitor FRAX486 , 2013, Proceedings of the National Academy of Sciences.

[22]  Steven S. Vogel,et al.  Concurrent Activation of Striatal Direct and Indirect Pathways During Action Initiation , 2013, Nature.

[23]  G. Cole,et al.  PAK in Alzheimer disease, Huntington disease and X-linked mental retardation , 2012, Cellular logistics.

[24]  E. Manser,et al.  PAK family kinases , 2012, Cellular logistics.

[25]  T. Nabeshima,et al.  MAGE-D1 Regulates Expression of Depression-Like Behavior through Serotonin Transporter Ubiquitylation , 2012, The Journal of Neuroscience.

[26]  D. Sheffler,et al.  Development of a highly selective, orally bioavailable and CNS penetrant M1 agonist derived from the MLPCN probe ML071. , 2011, Bioorganic & medicinal chemistry letters.

[27]  Jun B. Ding,et al.  Cholinergic modulation of synaptic integration and dendritic excitability in the striatum , 2011, Current Opinion in Neurobiology.

[28]  E. Manser,et al.  Rho GTPases and their role in organizing the actin cytoskeleton , 2011, Journal of Cell Science.

[29]  Zhengping Jia,et al.  p21-Activated Kinases 1 and 3 Control Brain Size through Coordinating Neuronal Complexity and Synaptic Properties , 2010, Molecular and Cellular Biology.

[30]  Yamato Hida,et al.  CAST and ELKS proteins: structural and functional determinants of the presynaptic active zone. , 2010, Journal of biochemistry.

[31]  A. Newton,et al.  Interaction with AKAP79 modifies the cellular pharmacology of PKC. , 2010, Molecular cell.

[32]  S. Jadhav,et al.  A Novel Selective Muscarinic Acetylcholine Receptor Subtype 1 Antagonist Reduces Seizures without Impairing Hippocampus-Dependent Learning , 2009, Molecular Pharmacology.

[33]  S. Schiffmann,et al.  D2R striatopallidal neurons inhibit both locomotor and drug reward processes , 2009, Nature Neuroscience.

[34]  M. Mann,et al.  MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification , 2008, Nature Biotechnology.

[35]  Pedro Rada,et al.  Accumbens dopamine-acetylcholine balance in approach and avoidance. , 2007, Current opinion in pharmacology.

[36]  D. Surmeier,et al.  Cholinergic modulation of Kir2 channels selectively elevates dendritic excitability in striatopallidal neurons , 2007, Nature Neuroscience.

[37]  S. Tonegawa,et al.  Inhibition of p21-activated kinase rescues symptoms of fragile X syndrome in mice , 2007, Proceedings of the National Academy of Sciences.

[38]  J. Ieni,et al.  The anti‐amnesic and neuroprotective effects of donepezil against amyloid β25‐35 peptide‐induced toxicity in mice involve an interaction with the σ1 receptor , 2006, British journal of pharmacology.

[39]  Y. Jan,et al.  Identification by mass spectrometry and functional characterization of two phosphorylation sites of KCNQ2/KCNQ3 channels. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[40]  K. Nakajo,et al.  Protein kinase C shifts the voltage dependence of KCNQ/M channels expressed in Xenopus oocytes , 2005, The Journal of physiology.

[41]  L. Van Aelst,et al.  Rho GTPases, dendritic structure, and mental retardation. , 2005, Journal of neurobiology.

[42]  S. Koizumi,et al.  Long‐lasting change in brain dynamics induced by methamphetamine: enhancement of protein kinase C‐dependent astrocytic response and behavioral sensitization , 2005, Journal of neurochemistry.

[43]  D. Webb,et al.  A GIT1/PIX/Rac/PAK Signaling Module Regulates Spine Morphogenesis and Synapse Formation through MLC , 2005, The Journal of Neuroscience.

[44]  E. Manser,et al.  PAK and other Rho-associated kinases--effectors with surprisingly diverse mechanisms of regulation. , 2005, The Biochemical journal.

[45]  C. Dermardirossian,et al.  p21-activated Kinase 1 Phosphorylates and Regulates 14-3-3 Binding to GEF-H1, a Microtubule-localized Rho Exchange Factor* , 2004, Journal of Biological Chemistry.

[46]  D. Morrison,et al.  Unlocking the code of 14-3-3 , 2004, Journal of Cell Science.

[47]  I. Pastan,et al.  Acetylcholine enhancement in the nucleus accumbens prevents addictive behaviors of cocaine and morphine , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[48]  D. Webb,et al.  Synapse formation is regulated by the signaling adaptor GIT1 , 2003, The Journal of cell biology.

[49]  S. Hamann,et al.  Impaired fear conditioning in Alzheimer’s disease , 2002, Neuropsychologia.

[50]  J. Macdonald,et al.  Abnormal Spine Morphology and Enhanced LTP in LIMK-1 Knockout Mice , 2002, Neuron.

[51]  D. Surmeier,et al.  Coordinated expression of muscarinic receptor messenger RNAs in striatal medium spiny neurons , 2001, Neuroscience.

[52]  B. Hoebel,et al.  Aversive hypothalamic stimulation releases acetylcholine in the nucleus accumbens, and stimulation-escape decreases it , 2001, Brain Research.

[53]  D. C. Edwards,et al.  Activation of LIM-kinase by Pak1 couples Rac/Cdc42 GTPase signalling to actin cytoskeletal dynamics , 1999, Nature Cell Biology.

[54]  R. Mohs,et al.  Donepezil improves cognition and global function in Alzheimer disease: a 15-week, double-blind, placebo-controlled study. Donepezil Study Group. , 1998, Archives of internal medicine.

[55]  L. Lim,et al.  A Conserved Negative Regulatory Region in αPAK: Inhibition of PAK Kinases Reveals Their Morphological Roles Downstream of Cdc42 and Rac1 , 1998, Molecular and Cellular Biology.

[56]  M. Yaffe,et al.  The Structural Basis for 14-3-3:Phosphopeptide Binding Specificity , 1997, Cell.

[57]  J. Tang,et al.  Modification of the Laemmli sodium dodecyl sulfate-polyacrylamide gel electrophoresis procedure to eliminate artifacts on reducing and nonreducing gels. , 1997, Analytical biochemistry.

[58]  N. Nomura,et al.  Identification of IQGAP as a Putative Target for the Small GTPases, Cdc42 and Rac1* , 1996, The Journal of Biological Chemistry.

[59]  C. Geula,et al.  Human striatum: Chemoarchitecture of the caudate nucleus, putamen and ventral striatum in health and Alzheimer's disease , 1994, Neuroscience.

[60]  R. Huganir,et al.  Regulation of NMDA receptor phosphorylation by alternative splicing of the C-terminal domain , 1993, Nature.

[61]  Y. Nishizuka Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C. , 1992, Science.

[62]  C. Mathis,et al.  The selective protein kinase C inhibitor, NPC 15437, induces specific deficits in memory retention in mice. , 1992, European Journal of Pharmacology.

[63]  E. Ross,et al.  Reconstitution of agonist-stimulated phosphatidylinositol 4,5-bisphosphate hydrolysis using purified m1 muscarinic receptor, Gq/11, and phospholipase C-beta 1. , 1992, The Journal of biological chemistry.

[64]  J. Sullivan,et al.  NPC 15437 interacts with the C1 domain of protein kinase C An analysis using mutant PKC constructs , 1991, FEBS letters.

[65]  C. Gerfen,et al.  D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. , 1990, Science.

[66]  T. Kameyama,et al.  Effects of benzodiazepines on passive avoidance response and latent learning in mice: relationship to benzodiazepine receptors and the cholinergic neuronal system. , 1990, The Journal of pharmacology and experimental therapeutics.

[67]  D. Araujo,et al.  Characterization and quantitative autoradiographic distribution of [3H]acetylcholine muscarinic receptors in mammalian brain. Apparent labelling of an M2-like receptor sub-type , 1989, Neuroscience.

[68]  P R Sanberg,et al.  Cholinergic lesion of the striatum impairs acquisition and retention of a passive avoidance response. , 1984, Behavioral neuroscience.

[69]  J. Green,et al.  Acetylcholine metabolism in the rat hippocampus and striatum following one-trial passive training , 1982, Neuropharmacology.

[70]  E. Perry,et al.  A cholinergic connection between normal aging and senile dementia in the human hippocampus , 1977, Neuroscience Letters.

[71]  P. Davies,et al.  SELECTIVE LOSS OF CENTRAL CHOLINERGIC NEURONS IN ALZHEIMER'S DISEASE , 1976, The Lancet.

[72]  E. Robertis,et al.  ISOLATION OF SYNAPTIC VESICLES AND STRUCTURAL ORGANIZATION OF THE ACETYLCHOLINE SYSTEM WITHIN BRAIN NERVE ENDINGS * , 1963, Journal of neurochemistry.

[73]  J. H. Quastel,et al.  Choline ester formation in, and choline esterase activities of, tissues in vitro. , 1936, The Biochemical journal.

[74]  Ashleigh K. Shelton,et al.  Passive Avoidance , 2020, Encyclopedia of Personality and Individual Differences.

[75]  K. Wennerberg,et al.  Analysis of activated GAPs and GEFs in cell lysates. , 2006, Methods in enzymology.

[76]  H. Sugimoto Donepezil hydrochloride: a treatment drug for Alzheimer's disease. , 2001, Chemical record.