Manipulation, Sampling and Inactivation of the SARS-CoV-2 Virus Using Nonuniform Electric Fields on Micro-Fabricated Platforms: A Review

Micro-devices that use electric fields to trap, analyze and inactivate micro-organisms vary in concept, design and application. The application of electric fields to manipulate and inactivate bacteria and single-celled organisms has been described extensively in the literature. By contrast, the effect of such fields on viruses is not well understood. This review explores the possibility of using existing methods for manipulating and inactivating larger viruses and bacteria, for smaller viruses, such as SARS-CoV-2. It also provides an overview of the theoretical background. The findings may be used to implement new ideas and frame experimental parameters that optimize the manipulation, sampling and inactivation of SARS-CoV-2 electrically.

[1]  P. Zarrintaj,et al.  COVID‐19: A systematic review and update on prevention, diagnosis, and treatment , 2022, MedComm.

[2]  T. Nonomura,et al.  A Simple Electrostatic Precipitator for Trapping Virus Particles Spread via Droplet Transmission , 2021, International journal of environmental research and public health.

[3]  Martin E. Garcia,et al.  The SARS-CoV-2 spike protein is vulnerable to moderate electric fields , 2021, Nature Communications.

[4]  L. A. Mandujano-Rosas,et al.  Receptor Binding Domain (RBD) Structural Susceptibility in the SARS-CoV-2 Virus Spike Protein Exposed to a Pulsed Electric Field , 2021 .

[5]  Fereshteh Moshfegh,et al.  Antiviral optical techniques as a possible novel approach to COVID-19 treatment , 2021 .

[6]  S. George,et al.  Optical technologies for the detection of viruses like COVID-19: Progress and prospects , 2021, Biosensors and Bioelectronics.

[7]  R. Podgornik,et al.  Electrostatic interaction between SARS-CoV-2 virus and charged electret fibre , 2020, 2012.07160.

[8]  Sang‐Woo Kim,et al.  Triboelectrification induced self-powered microbial disinfection using nanowire-enhanced localized electric field , 2020, Nature Communications.

[9]  S. Achenbach,et al.  Microfluidic devices for the detection of viruses: aspects of emergency fabrication during the COVID-19 pandemic and other outbreaks , 2020, Proceedings of the Royal Society A.

[10]  A. García-Valenzuela,et al.  Detecting the presence of nanoparticles in suspension in droplets with a coplanar differential capacitive sensor , 2020, 2020 IEEE International Conference on Engineering Veracruz (ICEV).

[11]  Jungho Hwang,et al.  An integrated system of air sampling and simultaneous enrichment for rapid biosensing of airborne coronavirus and influenza virus , 2020, Biosensors and Bioelectronics.

[12]  D. Mandal,et al.  Design of a self-powered triboelectric face mask , 2020, Nano Energy.

[13]  Ben Wang,et al.  Advanced “lab-on-a-chip” to detect viruses – Current challenges and future perspectives , 2020, Biosensors and Bioelectronics.

[14]  W. W. Leung,et al.  Electrostatic charged nanofiber filter for filtering airborne novel coronavirus (COVID-19) and nano-aerosols , 2020, Separation and Purification Technology.

[15]  Zhen Liu,et al.  A predictive model of the temperature-dependent inactivation of coronaviruses , 2020, Applied physics letters.

[16]  K. Wong,et al.  Optical Trapping, Sizing, and Probing Acoustic Modes of a Small Virus , 2020, Applied Sciences.

[17]  Blanca H Lapizco-Encinas,et al.  Analysis of Bacteriophages with Insulator-Based Dielectrophoresis , 2019, Micromachines.

[18]  S. Martínez-Chapa,et al.  Joule heating effects in optimized insulator‐based dielectrophoretic devices: An interplay between post geometry and temperature rise , 2019, Electrophoresis.

[19]  P. Renaud,et al.  MyDEP: A New Computational Tool for Dielectric Modeling of Particles and Cells. , 2019, Biophysical journal.

[20]  Jinhui Nie,et al.  Electrically Responsive Materials and Devices Directly Driven by the High Voltage of Triboelectric Nanogenerators , 2018, Advanced Functional Materials.

[21]  W. Wang,et al.  High cell viability microfluidic electroporation in a curved channel , 2017 .

[22]  Jun Yu Li,et al.  AC dielectrophoretic manipulation and electroporation of vaccinia virus using carbon nanoelectrode arrays , 2017, Electrophoresis.

[23]  Jaesung Jang,et al.  Gentle Sampling of Submicrometer Airborne Virus Particles using a Personal Electrostatic Particle Concentrator. , 2016, Environmental science & technology.

[24]  Mark A Hayes,et al.  Concentration of Sindbis virus with optimized gradient insulator-based dielectrophoresis. , 2016, The Analyst.

[25]  Ayae Honda,et al.  Nonlinear electrical impedance spectroscopy of viruses using very high electric fields created by nanogap electrodes , 2015, Front. Microbiol..

[26]  Mahmoud Al Ahmad,et al.  Label-Free Capacitance-Based Identification of Viruses , 2015, Scientific Reports.

[27]  B. Ding,et al.  Electreted polyetherimide-silica fibrous membranes for enhanced filtration of fine particles. , 2015, Journal of colloid and interface science.

[28]  Farah Mustafa,et al.  Virus detection and quantification using electrical parameters , 2014, Scientific Reports.

[29]  Bashir I. Morshed,et al.  Investigation of Low-Voltage Pulse Parameters on Electroporation and Electrical Lysis Using a Microfluidic Device With Interdigitated Electrodes , 2014, IEEE Transactions on Biomedical Engineering.

[30]  Lateef U. Syed,et al.  Manipulation of bacteriophages with dielectrophoresis on carbon nanofiber nanoelectrode arrays , 2013, Electrophoresis.

[31]  Takeshi Kikutani,et al.  A novel rapid oral bacteria detection apparatus for effective oral care to prevent pneumonia. , 2012, Gerodontology.

[32]  Shih-Kang Fan,et al.  Separation of dendritic and T cells using electrowetting and dielectrophoresis , 2012, 2012 7th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS).

[33]  Taisuke Masuda,et al.  Virus Enrichment for Single Virus Infection by Using 3D Insulator Based Dielectrophoresis , 2011, PloS one.

[34]  Junjie Zhu,et al.  Integrated electrical concentration and lysis of cells in a microfluidic chip. , 2010, Biomicrofluidics.

[35]  Antoni Ivorra,et al.  Electrical modeling of the influence of medium conductivity on electroporation. , 2010, Physical chemistry chemical physics : PCCP.

[36]  Paul Vulto,et al.  A microfluidic approach for high efficiency extraction of low molecular weight RNA. , 2010, Lab on a chip.

[37]  A. Gashimov,et al.  The influence of high-voltage impulse treatments on biological cells , 2009 .

[38]  Ling-Sheng Jang,et al.  Single-cell trapping utilizing negative dielectrophoretic quadrupole and microwell electrodes. , 2009, Biosensors & bioelectronics.

[39]  Hywel Morgan,et al.  Negative DEP traps for single cell immobilisation. , 2009, Lab on a chip.

[40]  Karan V. I. S. Kaler,et al.  Microfluidic Device for Dielectrophoresis Manipulation and Electrodisruption of Respiratory Pathogen Bordetella pertussis , 2008, IEEE Transactions on Biomedical Engineering.

[41]  Sadik C Esener,et al.  Alternating current electrokinetic separation and detection of DNA nanoparticles in high‐conductance solutions , 2008, Electrophoresis.

[42]  Marco Rito-Palomares,et al.  Dielectrophoresis for the manipulation of nanobioparticles , 2007, Electrophoresis.

[43]  Takeshi Hatsuzawa,et al.  On-Chip Single-Cell Lysis for Extracting Intracellular Material , 2007 .

[44]  Joel Voldman,et al.  nDEP microwells for single-cell patterning in physiological media. , 2007, Lab on a chip.

[45]  Kidong Park,et al.  Electrical capture and lysis of vaccinia virus particles using silicon nano-scale probe array , 2007, Biomedical microdevices.

[46]  Chii-Rong Yang,et al.  Three dimensional electrode array for cell lysis via electroporation. , 2006, Biosensors & bioelectronics.

[47]  J. Milner,et al.  Dielectrophoretic investigation of plant virus particles: Cow Pea Mosaic Virus and Tobacco Mosaic Virus , 2006, Electrophoresis.

[48]  Martin Stelzle,et al.  Accumulation and trapping of hepatitis A virus particles by electrohydrodynamic flow and dielectrophoresis , 2006, Electrophoresis.

[49]  H. Morgan,et al.  Dielectrophoresis of DNA: time- and frequency-dependent collections on microelectrodes , 2006, IEEE Transactions on NanoBioscience.

[50]  K. Jensen,et al.  A microfluidic electroporation device for cell lysis. , 2005, Lab on a chip.

[51]  R. Davalos,et al.  An insulator-based (electrodeless) dielectrophoretic concentrator for microbes in water. , 2005, Journal of microbiological methods.

[52]  Hakho Lee,et al.  Addressable micropost array for the dielectrophoretic manipulation of particles in fluid , 2004 .

[53]  Gengfeng Zheng,et al.  Electrical detection of single viruses. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[54]  S. J. MacGregor,et al.  Pulsed electric field inactivation of spoilage microorganisms in alcoholic beverages , 2004, Proceedings of the IEEE.

[55]  Rashid Bashir,et al.  Real-time virus trapping and fluorescent imaging in microfluidic devices , 2004 .

[56]  M. Stelzle,et al.  Microdevices for separation, accumulation, and analysis of biological micro- and nanoparticles. , 2003, IEE proceedings. Nanobiotechnology.

[57]  Janko Auerswald,et al.  Quantitative assessment of dielectrophoresis as a micro fluidic retention and separation technique for beads and human blood erythrocytes , 2003 .

[58]  Richard Superfine,et al.  Two-Dimensional Manipulation and Orientation of Actin−Myosin Systems with Dielectrophoresis , 2003 .

[59]  A. Yousef,et al.  Susceptibility of human rotavirus to ozone, high pressure, and pulsed electric field. , 2002, Journal of food protection.

[60]  W. M. Arnold,et al.  Monitoring of biological cell collection by dielectric spectroscopy , 2001, 2001 Annual Report Conference on Electrical Insulation and Dielectric Phenomena (Cat. No.01CH37225).

[61]  L. Mir,et al.  Cell membrane electropermeabilization by symmetrical bipolar rectangular pulses. Part I. Increased efficiency of permeabilization. , 2001, Bioelectrochemistry.

[62]  K. Schoenbach,et al.  Bioelectrics-new applications for pulsed power technology , 2001, PPPS-2001 Pulsed Power Plasma Science 2001. 28th IEEE International Conference on Plasma Science and 13th IEEE International Pulsed Power Conference. Digest of Papers (Cat. No.01CH37251).

[63]  K. Schoenbach,et al.  Nanosecond pulsed electric field (nsPEF) effects on cells and tissues: apoptosis induction and tumor growth inhibition , 2001, PPPS-2001 Pulsed Power Plasma Science 2001. 28th IEEE International Conference on Plasma Science and 13th IEEE International Pulsed Power Conference. Digest of Papers (Cat. No.01CH37251).

[64]  Ravindra P. Joshi,et al.  Bacterial decontamination of liquids with pulsed electric fields , 2000 .

[65]  H Morgan,et al.  Separation of submicron bioparticles by dielectrophoresis. , 1999, Biophysical journal.

[66]  F J Rixon,et al.  Manipulation of herpes simplex virus type 1 by dielectrophoresis. , 1998, Biochimica et biophysica acta.

[67]  Damijan Miklavčič,et al.  Time course of transmembrane voltage induced by time-varying electric fields—a method for theoretical analysis and its application , 1998 .

[68]  S.W. Lee,et al.  A micro cell lysis device , 1998, Proceedings MEMS 98. IEEE. Eleventh Annual International Workshop on Micro Electro Mechanical Systems. An Investigation of Micro Structures, Sensors, Actuators, Machines and Systems (Cat. No.98CH36176.

[69]  W. B. Betts,et al.  Dielectrophoretic classification of bacteria using differential impedance measurements , 1998 .

[70]  Hywel Morgan,et al.  Dielectrophoretic manipulation of rod-shaped viral particles , 1997 .

[71]  Tadej Kotnik,et al.  Sensitivity of transmembrane voltage induced by applied electric fields—A theoretical analysis , 1997 .

[72]  K. Schoenbach,et al.  The effect of pulsed electrical fields on biological cells , 1997, Digest of Technical Papers. 11th IEEE International Pulsed Power Conference (Cat. No.97CH36127).

[73]  K. Schoenbach,et al.  Biofouling prevention with pulsed electric fields , 1996, Proceedings of 1996 International Power Modulator Symposium.

[74]  F. F. Becker,et al.  Numerical analysis of the influence of experimental conditions on the accuracy of dielectric parameters derived from electrorotation measurements , 1995 .

[75]  K R Foster,et al.  Electrorotation and levitation of cells and colloidal particles. , 1992, Biophysical journal.

[76]  C. Grosse,et al.  The influence of diffusion on the dielectric properties of suspensions of conductive spherical particles in an electrolyte , 1992 .

[77]  T. Tsong,et al.  Schwan equation and transmembrane potential induced by alternating electric field. , 1990, Biophysical journal.

[78]  K. Kaler,et al.  Dielectrophoretic spectra of single cells determined by feedback-controlled levitation. , 1990, Biophysical journal.

[79]  P. Marszalek,et al.  Experimental verification of a theoretical treatment of the mechanism of dielectrophoresis , 1989 .

[80]  K. Kaler,et al.  The continuous positive and negative dielectrophoresis of microorganisms , 1981 .

[81]  J. Bancroft,et al.  A Titrimetric and Electrophoretic Study of Cowpea Chlorotic Mottle Virus and its Protein , 1973 .

[82]  B. Scherlag,et al.  Apparatus for Generating Negative air ions: Inactivation of coronaviruses , 2020 .

[83]  Michihiko Nakano,et al.  Dielectrophoresis and dielectrophoretic impedance detection of adenovirus and rotavirus , 2015 .

[84]  Nicholas Wood,et al.  Trapping of nanoparticles with dielectrophoretic nano-probes , 2012 .

[85]  E. Neumann,et al.  Electroporation and Electrofusion in Cell Biology , 1989, Springer US.