Calibration of the charge and energy loss per unit length of the MicroBooNE liquid argon time projection chamber using muons and protons

We describe a method used to calibrate the position- and time-dependent response of the MicroBooNE liquid argon time projection chamber anode wires to ionization particle energy loss. The method makes use of crossing cosmic-ray muons to partially correct anode wire signals for multiple effects as a function of time and position, including cross-connected TPC wires, space charge effects, electron attachment to impurities, diffusion, and recombination. The overall energy scale is then determined using fully-contained beam-induced muons originating and stopping in the active region of the detector. Using this method, we obtain an absolute energy scale uncertainty of 2% in data. We use stopping protons to further refine the relation between the measured charge and the energy loss for highly-ionizing particles. This data-driven detector calibration improves both the measurement of total deposited energy and particle identification based on energy loss per unit length as a function of residual range. As an example, the proton selection efficiency is increased by 2% after detector calibration.

MicroBooNE collaboration C. Adams | D. A. Wickremasinghe | J. I. Crespo-Anadón | M. Convery | K. Mason | M. Murphy | A. Ereditato | G. Cerati | T. Bolton | M. Mooney | S. Gollapinni | J. Asaadi | H. Greenlee | J. Joshi | W. Ketchum | M. Kirby | S. Lockwitz | Y. Tsai | J. Zennamo | S. Wolbers | T. Yang | T. Usher | P. Spentzouris | M. Bishai | D. Franco | B. Viren | W. Wu | M. Tutto | E. Church | R. Guenette | V. Papavassiliou | M. Wospakrik | L. Ren | A. Marchionni | G. Barr | G. Zeller | K. Mistry | S. Prince | M. Weber | H. Wei | O. Palamara | V. Paolone | R. Johnson | P. Nienaber | D. Naples | W. Seligman | L. Camilleri | R. Carr | G. Horton-Smith | M. Shaevitz | J. Spitz | K. Terao | M. Toups | S. Balasubramanian | C. Zhang | W. Louis | N. Tagg | F. Bay | S. Dytman | P. Guzowski | B. Kirby | I. Kreslo | J. Nowak | J. Raaf | T. Strauss | T. Wongjirad | Y. Chen | W. Gu | X. Ji | B. Littlejohn | X. Qian | B. Baller | M. Bass | F. Cavanna | B. Fleming | C. James | G. Karagiorgi | C. Mariani | J. Marshall | C. Moore | Ž. Pavlović | L. Rochester | D. Schmitz | M. Soderberg | M. Stancari | A. Szelc | S. Soldner-Rembold | A. Blake | J. Evans | S. Tufanli | S. Berkman | K. Duffy | A. Furmanski | D. Goeldi | P. Hamilton | J. H. Jo | B. Lundberg | I. Lepetic | A. Schukraft | N. Foppiani | E. Gramellini | C. Barnes | A. Hourlier | R. Sharankova | E. Huang | D. M. Caicedo | W. Tang | N. McConkey | M. Luethi | B. Eberly | J. Mousseau | P. Green | S. Gardiner | A. Papadopoulou | V. Basque | D. Caratelli | I. C. Terrazas | L. Dominé | L. E. Sanchez | R. Fitzpatrick | D. Garcia-Gamez | O. Goodwin | R. Itay | L. Jiang | Y. Jwa | A. Lister | D. Lorca | X. Luo | J. Martín-Albo | A. Mastbaum | J. Mills | T. Mohayai | J. Moon | A. Paudel | A. Rafique | H. Rogers | B. Russell | J. Sinclair | A. Smith | Z. Williams | M. Alrashed | J. Anthony | A. Ashkenazi | A. Bhanderi | A. Bhat | D. Cianci | E. Cohen | L. Cooper-Troendle | D. Devitt | L. Gu | O. Hen | T. Kobilarcik | Y. Li, | S. Marcocci | V. Meddage | T. Mettler | K. Miller | A. Mogan | S. Pate | E. Piasetzky | D. Porzio | M. Ross-Lonergan | G. Scanavini | E. Snider | S. Soleti | J. S. John | K. Sutton | S. Sword-Fehlberg | R. Thornton | G. Yarbrough | L. Yates | R. Grosso | R. C. Fernández | J. Esquivel | V. Genty | C. Hill | R. Murrells | G. Pulliam | W. V. D. Pontseele | R. G. Water | K. Woodruff | M. C. Adams | A. Diaz | V. Pandey | Z. Pavlovic | Rui An | R. Neely | J. J. D. Vries | J. Conrad | C. R. V. Rohr | J. John | Y. Li | J. Jo | J. Evans

[1]  D. A. Wickremasinghe,et al.  First Measurement of Inclusive Muon Neutrino Charged Current Differential Cross Sections on Argon at E_{ν}∼0.8  GeV with the MicroBooNE Detector. , 2019, Physical review letters.

[2]  MicroBooNE collaboration C. Adams,et al.  First measurement of νμ charged-current π0 production on argon with the MicroBooNE detector , 2019, Physical Review D.

[3]  MicroBooNE First Measurement of Muon Neutrino Charged Current Single Neutral Pion Production on Argon with the MicroBooNE LArTPC , 2018 .

[4]  C. D. Moore,et al.  Ionization electron signal processing in single phase LArTPCs. Part II. Data/simulation comparison and performance in MicroBooNE , 2018, Journal of Instrumentation.

[5]  C. D. Moore,et al.  Ionization electron signal processing in single phase LArTPCs. Part I. Algorithm Description and quantitative evaluation with MicroBooNE simulation , 2018, Journal of Instrumentation.

[6]  C. D. Moore,et al.  The Pandora multi-algorithm approach to automated pattern recognition of cosmic-ray muon and neutrino events in the MicroBooNE detector , 2017, The European Physical Journal C.

[7]  D. A. Wickremasinghe,et al.  Noise Characterization and Filtering in the MicroBooNE Liquid Argon TPC , 2017, 1705.07341.

[8]  E. L. Snider,et al.  LArSoft: toolkit for simulation, reconstruction and analysis of liquid argon TPC neutrino detectors , 2017 .

[9]  D. A. Wickremasinghe,et al.  Design and Construction of the MicroBooNE Detector , 2016, 1612.05824.

[10]  J. Joshi,et al.  Measurement of Longitudinal Electron Diffusion in Liquid Argon , 2015, 1508.07059.

[11]  M. Mooney The MicroBooNE Experiment and the Impact of Space Charge Effects , 2015, 1511.01563.

[12]  S. Lockwitz,et al.  Design and operation of LongBo: a 2 m long drift liquid argon TPC , 2015, 1504.00398.

[13]  B. Jones,et al.  The photomultiplier tube calibration system of the MicroBooNE experiment , 2015, 1502.04159.

[14]  C. Bromberg,et al.  A study of electron recombination using highly ionizing particles in the ArgoNeuT Liquid Argon TPC , 2013, 1306.1712.

[15]  C. Bromberg,et al.  The ArgoNeuT Detector in the NuMI Low-Energy beam line at Fermilab , 2012, 1205.6747.

[16]  Veljko Radeka,et al.  Front-End ASIC for a Liquid Argon TPC , 2011, IEEE Transactions on Nuclear Science.

[17]  V. Radeka,et al.  Front-end ASIC for a liquid argon TPC , 2010, IEEE Nuclear Science Symposuim & Medical Imaging Conference.

[18]  R. Hatcher,et al.  The GENIE * Neutrino Monte Carlo Generator , 2009, 0905.2517.

[19]  J. Hartnell Measurement of the calorimetric energy scale in MINOS , 2005 .

[20]  M. Campanelli,et al.  Study of electron recombination in liquid argon with the ICARUS TPC , 2004 .

[21]  M. Campanelli,et al.  Analysis of the liquid argon purity in the ICARUS T600 TPC , 2004 .

[22]  A. Dell'Acqua,et al.  Geant4 - A simulation toolkit , 2003 .

[23]  D. Groom,et al.  MUON STOPPING POWER AND RANGE TABLES 10 MeV–100 TeV , 2001 .

[24]  J. Knapp,et al.  CORSIKA: A Monte Carlo code to simulate extensive air showers , 1998 .

[25]  A. Ciocio,et al.  A study of the factors affecting the electron lifetime in ultra-pure liquid argon , 1991 .

[26]  A. Ciocio,et al.  A study of the factors affecting the electron lifetime in ultrapure liquid argon , 1991 .

[27]  E. Buckley,et al.  A study of ionization electrons drifting over large distances in liquid argon , 1989 .

[28]  Hans Bichsel,et al.  Straggling in thin silicon detectors , 1988 .

[29]  Thomas,et al.  Recombination of electron-ion pairs in liquid argon and liquid xenon. , 1987, Physical review. A, General physics.

[30]  J. B. Birks,et al.  The Theory and Practice of Scintillation Counting , 1965 .