One-Counter Automata with Counter Observability

In a one-counter automaton (OCA), one can produce a letter from some finite alphabet, increment and decrement the counter by one, or compare it with constants up to some threshold. It is well-known that universality and language inclusion for OCAs are undecidable. In this paper, we consider OCAs with counter observability: Whenever the automaton produces a letter, it outputs the current counter value along with it. Hence, its language is now a set of words over an infinite alphabet. We show that universality and inclusion for that model are PSPACE-complete, thus no harder than the corresponding problems for finite automata. In fact, by establishing a link with visibly one-counter automata, we show that OCAs with counter observability are effectively determinizable and closed under all boolean operations.

[1]  R. Alur,et al.  Adding nesting structure to words , 2006, JACM.

[2]  Anthony Widjaja Lin,et al.  On the Computational Complexity of Verifying One-Counter Processes , 2009, 2009 24th Annual IEEE Symposium on Logic In Computer Science.

[3]  Wolfgang Thomas,et al.  Finite Automata Over Infinite Alphabets: Two Models with Transitions for Local Change , 2018, Int. J. Found. Comput. Sci..

[4]  Jirí Srba,et al.  Height-Deterministic Pushdown Automata , 2007, MFCS.

[5]  Jirí Srba Visibly Pushdown Automata: From Language Equivalence to Simulation and Bisimulation , 2006, CSL.

[6]  Petr Jancar,et al.  Decidability of Bisimilarity for One-Counter Processes , 2000, Inf. Comput..

[7]  Oscar H. Ibarra,et al.  Restricted one-counter machines with undecidable universe problems , 1979, Mathematical systems theory.

[8]  Sheila A. Greibach,et al.  An Infinite Hierarchy of Context-Free Languages , 1967, JACM.

[9]  J. Berstel,et al.  Context-free languages , 1993, SIGA.

[10]  Michal Pilipczuk,et al.  Shortest Paths in One-Counter Systems , 2015, FoSSaCS.

[11]  Alexis Bès An Application of the Feferman-Vaught Theorem to Automata and Logics for Words over an Infinite Alphabet , 2008, Log. Methods Comput. Sci..

[12]  Daniel Neider Learning Visibly One-Counter Automata in Polynomial Time , 2010 .

[13]  Mahesh Viswanathan,et al.  Congruences for Visibly Pushdown Languages , 2005, ICALP.

[14]  Wolfgang Thomas,et al.  Languages, Automata, and Logic , 1997, Handbook of Formal Languages.

[15]  Joël Ouaknine,et al.  Relating Reachability Problems in Timed and Counter Automata , 2016, Fundam. Informaticae.

[16]  Anthony Widjaja To Unary finite automata vs. arithmetic progressions , 2008 .

[17]  Igor Walukiewicz,et al.  Minimizing Variants of Visibly Pushdown Automata , 2007, MFCS.

[18]  Christof Löding,et al.  Regularity Problems for Visibly Pushdown Languages , 2006, STACS.

[19]  Dana Angluin,et al.  Learning Regular Sets from Queries and Counterexamples , 1987, Inf. Comput..

[20]  K. Mehlhorn Pebbling Moutain Ranges and its Application of DCFL-Recognition , 1980, ICALP.

[21]  Leslie G. Valiant,et al.  Deterministic One-Counter Automata , 1975, J. Comput. Syst. Sci..

[22]  Rajeev Alur,et al.  A Theory of Timed Automata , 1994, Theor. Comput. Sci..

[23]  Jean-Pierre Pécuchet Automates Boustrophédon et Mots Infinis , 1985, Theor. Comput. Sci..

[24]  Jan van Leeuwen,et al.  Effective constructions in well-partially- ordered free monoids , 1978, Discret. Math..

[25]  Albert R. Meyer,et al.  The Equivalence Problem for Regular Expressions with Squaring Requires Exponential Space , 1972, SWAT.

[26]  Loris D'Antoni,et al.  Minimization of symbolic automata , 2014, POPL.