MATLAB tool for predicting the global solar radiation in UAE

The prediction of the global solar radiation is of great importance for several engineering applications. Just to name few, solar radiation estimates are fundamental during the design phase of several technologies such as: flat plates and concentrating collectors, solar energy storage devices, solar heaters, and photovoltaic systems. The geographical location of the United Arab Emirates (UAE) (between 26° and 32° North Latitude and between 51° and 56° 25 East Latitude) favors the development and utilization of solar energy. A graphical user interface (GUI) was designed to assist solar energy planners, engineers, architectural scientists, and researchers to predict global solar radiation in different regions of the UAE. The predicted models are developed using Artificial Neural Network techniques.

[1]  Mohamed Mohandes,et al.  USE OF RADIAL BASIS FUNCTIONS FOR ESTIMATING MONTHLY MEAN DAILY SOLAR RADIATION , 2000 .

[2]  David B. Ampratwum,et al.  Estimation of solar radiation from the number of sunshine hours , 1999 .

[3]  Arif Hepbasli,et al.  Comparison of solar radiation correlations for İzmir, Turkey , 2002 .

[4]  Mónica Bocco,et al.  Comparison of Regression and Neural Networks Models to Estimate Solar Radiation , 2010 .

[5]  H. Hejase,et al.  Time-Series Regression Model for Prediction of Mean Daily Global Solar Radiation in Al-Ain, UAE , 2012 .

[6]  B. Akinoglu,et al.  A further comparison and discussion of sunshine-based models to estimate global solar radiation , 1990 .

[7]  Nadir Ahmed Elagib,et al.  New approaches for estimating global solar radiation across Sudan , 2000 .

[8]  Simon Haykin,et al.  Neural Networks and Learning Machines , 2010 .

[9]  A. Angstroem Solar and terrestrial radiation , 1924 .

[10]  A. Angstrom Solar and terrestrial radiation. Report to the international commission for solar research on actinometric investigations of solar and atmospheric radiation , 2007 .

[11]  I. T. Toğrul,et al.  Global solar radiation over Turkey: comparison of predicted and measured data , 2002 .

[12]  Guillermo P Podesta,et al.  Estimating daily solar radiation in the Argentine Pampas , 2004 .

[13]  T. Krishnaiah,et al.  Neural Network Approach for Modelling Global Solar Radiation , 2007 .

[14]  Ali Assi,et al.  Prediction of Global Solar Radiation in Abu Dhabi , 2012 .

[15]  Jin Yang,et al.  On-line building energy prediction using adaptive artificial neural networks , 2005 .

[16]  Larry C. Purcell,et al.  Evaluation of Solar Radiation Prediction Models in North America , 2004 .

[17]  Mohamed Mohandes,et al.  Estimation of global solar radiation using artificial neural networks , 1998 .

[18]  Shafiqur Rehman,et al.  Application of neural networks for the prediction of hourly mean surface temperatures in Saudi Arabia , 2002 .

[19]  M. Tadros,et al.  Uses of sunshine duration to estimate the global solar radiation over eight meteorological stations in Egypt , 2000 .

[20]  Zhou Jin,et al.  General formula for estimation of monthly average daily global solar radiation in China , 2005 .

[21]  Saleh M. Al-Alawi,et al.  An ANN-based approach for predicting global radiation in locations with no direct measurement instrumentation , 1998 .

[22]  V. Badescu Modeling Solar Radiation at the Earth’s Surface , 2008 .

[23]  Martha C. Anderson,et al.  A comparison of empirical and neural network approaches for estimating corn and soybean leaf area index from Landsat ETM+ imagery ☆ , 2004 .

[24]  A. S. Sambo Empirical models for the correlation of global solar radiation with meteorological data for Northern Nigeria , 1986 .

[25]  F. J. Newland,et al.  A study of solar radiation models for the coastal region of South China , 1989 .

[26]  Ahmet Duran Şahin A new formulation for solar irradiation and sunshine duration estimation , 2007 .

[27]  F. Anctil,et al.  Comparison of empirical daily surface incoming solar radiation models , 2008 .

[28]  C. Ertekin,et al.  Evaluation of global solar radiation models for Konya, Turkey , 2006 .

[29]  T. Samuel,et al.  Estimation of global radiation for Sri Lanka , 1991 .

[30]  A. Assi,et al.  Prediction of Monthly Average Daily Global Solar Radiation in Al Ain City – UAE Using Artificial Neural Networks , 2010 .

[31]  A. W. Jayawardena,et al.  Use of Radial Basis Function Type Artificial Neural Networks for Runoff Simulation , 1998 .

[32]  Silas Michaelides,et al.  Estimation of Surface Solar Radiation with Artificial Neural Networks , 2008 .

[33]  J. Almorox,et al.  ESTIMATIO N OF GLOBAL SOLAR RADIATION IN VENEZUELA , 2008 .

[34]  Anil K. Jain,et al.  Artificial Neural Networks: A Tutorial , 1996, Computer.

[35]  Hassan A. N. Hejase,et al.  Prediction of global solar radiation in UAE using artificial neural networks , 2013, 2013 International Conference on Renewable Energy Research and Applications (ICRERA).

[36]  A. Ghanbarzadeh,et al.  The potential of different artificial neural network (ANN) techniques in daily global solar radiation modeling based on meteorological data , 2010 .

[37]  S. N. Alamri,et al.  ANN-based modelling and estimation of daily global solar radiation data: A case study , 2009 .

[38]  S. Rehman,et al.  Artificial neural network estimation of global solar radiation using air temperature and relative humidity , 2008 .

[39]  Joseph A. Jervase,et al.  Monthly average daily solar radiation and clearness index contour maps over Oman , 2003 .

[40]  K. Bakirci Correlations for estimation of daily global solar radiation with hours of bright sunshine in Turkey , 2009 .

[41]  A. Assi,et al.  Estimating Global Solar Radiation on Horizontal from Sunshine Hours in Abu Dhabi – UAE , 2010 .

[42]  Hamdy K. Elminir,et al.  Estimation of solar radiation components incident on Helwan site using neural networks , 2005 .