The effective variance weighting for least squares calculations applied to the mass balance receptor model
暂无分享,去创建一个
[1] R. W. Shaw,et al. An alternative to least squares statistics for comparison of duplicate measurements , 1983 .
[2] R. Flagan,et al. The extinction coefficient of multicomponent aerosols , 1982 .
[3] T. G. Dzubay,et al. CHEMICAL ELEMENT BALANCE METHOD APPLIED TO DICHOTOMOUS SAMPLER DATA , 1980 .
[4] Michael T. Kleinman,et al. Identifying and estimating the relative importance of sources of airborne particulates , 1980 .
[5] J. Watson. Chemical element balance receptor model methodology for assessing the sources of fine and total suspended particulate matter in Portland, Oregon , 1979 .
[6] Glen E. Gordon,et al. Chemical element balances and identification of air pollution sources in Washington, D.C. , 1978 .
[7] W. Pierson,et al. Sources and elemental composition of aerosol in Pasadena, California, by energy-dispersive x-ray fluorescence , 1975 .
[8] J. Macdonald. Comment on ’’Simple method for fitting data when both variables have uncertainties’’ , 1975 .
[9] Richard H. Luecke,et al. Parameter estimation with error in the observables , 1975 .
[10] S. Friedlander,et al. Relating particulate pollution to sources: the 1972 California aerosol characterization study. , 1975, Atmospheric environment.
[11] J. Macdonald. A note on generalized nonlinear least-squares data fitting , 1974 .
[12] D. R. Barker,et al. Simple Method for Fitting Data when Both Variables Have Uncertainties , 1974 .
[13] H. Britt,et al. The Estimation of Parameters in Nonlinear, Implicit Models , 1973 .
[14] S. Friedlander,et al. Chemical element balances and identification of air pollution sources. , 1973, Environmental science & technology.
[15] D. R. Powell,et al. A rapidly convergent iterative method for the solution of the generalised nonlinear least squares problem , 1972, Comput. J..
[16] S. Friedlander,et al. A Chemical Element Balance for the Pasadena Aerosol , 1972 .
[17] P. R. Bevington,et al. Data Reduction and Error Analysis for the Physical Sciences , 1969 .
[18] M. Clutton-Brock,et al. Likelihood Distributions for Estimating Functions when Both Variables are Subject to Error , 1967 .
[19] J. G. Hust,et al. Curve-fitting techniques and applications to thermodynamics , 1967 .
[20] Mary L. Boas. Mathematical Methods in the Physical Sciences , 1967 .
[21] D. York. Least-squares fitting of a straight line. , 1966 .
[22] W. Davidon,et al. Mathematical Methods of Physics , 1965 .
[23] F. S. Acton. Analysis of straight-line data. , 1960 .
[24] M. S. Bartlett,et al. Fitting a Straight Line When Both Variables are Subject to Error , 1949 .
[25] L. Guttman,et al. Statistical Adjustment of Data , 1944 .