The effective variance weighting for least squares calculations applied to the mass balance receptor model

[1]  R. W. Shaw,et al.  An alternative to least squares statistics for comparison of duplicate measurements , 1983 .

[2]  R. Flagan,et al.  The extinction coefficient of multicomponent aerosols , 1982 .

[3]  T. G. Dzubay,et al.  CHEMICAL ELEMENT BALANCE METHOD APPLIED TO DICHOTOMOUS SAMPLER DATA , 1980 .

[4]  Michael T. Kleinman,et al.  Identifying and estimating the relative importance of sources of airborne particulates , 1980 .

[5]  J. Watson Chemical element balance receptor model methodology for assessing the sources of fine and total suspended particulate matter in Portland, Oregon , 1979 .

[6]  Glen E. Gordon,et al.  Chemical element balances and identification of air pollution sources in Washington, D.C. , 1978 .

[7]  W. Pierson,et al.  Sources and elemental composition of aerosol in Pasadena, California, by energy-dispersive x-ray fluorescence , 1975 .

[8]  J. Macdonald Comment on ’’Simple method for fitting data when both variables have uncertainties’’ , 1975 .

[9]  Richard H. Luecke,et al.  Parameter estimation with error in the observables , 1975 .

[10]  S. Friedlander,et al.  Relating particulate pollution to sources: the 1972 California aerosol characterization study. , 1975, Atmospheric environment.

[11]  J. Macdonald A note on generalized nonlinear least-squares data fitting , 1974 .

[12]  D. R. Barker,et al.  Simple Method for Fitting Data when Both Variables Have Uncertainties , 1974 .

[13]  H. Britt,et al.  The Estimation of Parameters in Nonlinear, Implicit Models , 1973 .

[14]  S. Friedlander,et al.  Chemical element balances and identification of air pollution sources. , 1973, Environmental science & technology.

[15]  D. R. Powell,et al.  A rapidly convergent iterative method for the solution of the generalised nonlinear least squares problem , 1972, Comput. J..

[16]  S. Friedlander,et al.  A Chemical Element Balance for the Pasadena Aerosol , 1972 .

[17]  P. R. Bevington,et al.  Data Reduction and Error Analysis for the Physical Sciences , 1969 .

[18]  M. Clutton-Brock,et al.  Likelihood Distributions for Estimating Functions when Both Variables are Subject to Error , 1967 .

[19]  J. G. Hust,et al.  Curve-fitting techniques and applications to thermodynamics , 1967 .

[20]  Mary L. Boas Mathematical Methods in the Physical Sciences , 1967 .

[21]  D. York Least-squares fitting of a straight line. , 1966 .

[22]  W. Davidon,et al.  Mathematical Methods of Physics , 1965 .

[23]  F. S. Acton Analysis of straight-line data. , 1960 .

[24]  M. S. Bartlett,et al.  Fitting a Straight Line When Both Variables are Subject to Error , 1949 .

[25]  L. Guttman,et al.  Statistical Adjustment of Data , 1944 .