Finding the Medial Axis of a Simple Polygon in Linear Time

Abstract. We give a linear-time algorithm for computing the medial axis of a simple polygon P . This answers a long-standing open question—previously, the best deterministic algorithm ran in O(n log n) time. We decompose P into pseudonormal histograms, then influence histograms, then xy monotone histograms. We can compute the medial axes for xy monotone histograms and merge to obtain the medial axis for P .

[1]  Michael Ian Shamos,et al.  Closest-point problems , 1975, 16th Annual Symposium on Foundations of Computer Science (sfcs 1975).

[2]  Bernard Chazelle Triangulating a simple polygon in linear time , 1991, Discret. Comput. Geom..

[3]  P. J. Vermeer,et al.  Two-dimensional MAT to boundary conversion , 1993, Solid Modeling and Applications.

[4]  Andrzej Lingas,et al.  Fast Skeleton Construction , 1995, ESA.

[5]  Andrzej Lingas,et al.  A linear-time randomized algorithm for the bounded Voronoi diagram of a simple polygon , 1993, SCG '93.

[6]  Peter E. Hart,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[7]  Franz Aurenhammer,et al.  Voronoi diagrams—a survey of a fundamental geometric data structure , 1991, CSUR.

[8]  Leonidas J. Guibas,et al.  A linear-time algorithm for computing the voronoi diagram of a convex polygon , 1989, Discret. Comput. Geom..

[9]  He Xu,et al.  Detecting and eliminating false strokes in skeletons by geometric analysis , 1993, Other Conferences.

[10]  Andrzej Lingas,et al.  On Computing the Voronoi Diagram for Restricted Planar Figures , 1991, WADS.

[11]  Chee-Keng Yap,et al.  AnO(n logn) algorithm for the voronoi diagram of a set of simple curve segments , 1987, Discret. Comput. Geom..

[12]  Francis Y. L. Chin,et al.  Finding the Constrained Delaunay Triangulation and Constrained Voronoi Diagram of a Simple Polygon in Linear Time , 1999, SIAM J. Comput..

[13]  David G. Kirkpatrick,et al.  Efficient computation of continuous skeletons , 1979, 20th Annual Symposium on Foundations of Computer Science (sfcs 1979).

[14]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .

[15]  David G. Kirkpatrick,et al.  A compact piecewise-linear voronoi diagram for convex sites in the plane , 1996, Discret. Comput. Geom..

[16]  Y. Chien,et al.  Pattern classification and scene analysis , 1974 .

[17]  W. E. Hartnett,et al.  Shape Recognition, Prairie Fires, Convex Deficiencies and Skeletons , 1968 .

[18]  Kurt Mehlhorn,et al.  Randomized Incremental Construction of Abstract Voronoi Diagrams , 1993, Comput. Geom..

[19]  D. T. Lee,et al.  Medial Axis Transformation of a Planar Shape , 1982, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[20]  Kurt Mehlhorn,et al.  On the construction of abstract voronoi diagrams , 1990, STACS.

[21]  Theodosios Pavlidis,et al.  A review of algorithms for shape analysis , 1978 .

[22]  Martin Held,et al.  On the Computational Geometry of Pocket Machining , 1991, Lecture Notes in Computer Science.