Internal friction and microstructure of ti and ti-mo alloys containing oxygen

[1]  Wangyu Hu,et al.  The anisotropic character of Snoek relaxation in FeC system: A kinetic Monte Carlo and molecular dynamics simulation , 2015 .

[2]  H. Sandim,et al.  Anelastic spectroscopy in Ti-13V-11Cr-3Al alloy , 2014, Journal of Materials Science.

[3]  S. Qu,et al.  New Developments of Ti-Based Alloys for Biomedical Applications , 2014, Materials.

[4]  M. Buzalaf,et al.  Influence of Oxygen Content and Microstructure on the Mechanical Properties and Biocompatibility of Ti–15 wt%Mo Alloy Used for Biomedical Applications , 2014, Materials.

[5]  M. Buzalaf,et al.  The effect of the solute on the structure, selected mechanical properties, and biocompatibility of Ti-Zr system alloys for dental applications. , 2014, Materials science & engineering. C, Materials for biological applications.

[6]  Mitsuo Niinomi,et al.  Biocompatibility of Ti-alloys for long-term implantation. , 2013, Journal of the mechanical behavior of biomedical materials.

[7]  James C. Williams,et al.  Perspectives on Titanium Science and Technology , 2013 .

[8]  M. Niinomi,et al.  Beta type Ti-Mo alloys with changeable Young's modulus for spinal fixation applications. , 2012, Acta biomaterialia.

[9]  O. Florêncio,et al.  Anelastic Relaxation Measurements in Nb-46wt%Ti Alloys with Interstitial Solutes in Solid Solution , 2012 .

[10]  M. Niinomi,et al.  Titanium-Based Biomaterials for Preventing Stress Shielding between Implant Devices and Bone , 2011, International journal of biomaterials.

[11]  M. Buzalaf,et al.  Influence of heat treatment and oxygen doping on the mechanical properties and biocompatibility of titanium-niobium binary alloys. , 2011, Artificial organs.

[12]  K. Ngai Relaxation and Diffusion in Complex Systems , 2011 .

[13]  M. Buzalaf,et al.  Preparation and Characterization of Ti-15Mo Alloy used as Biomaterial , 2011 .

[14]  Mikhail S. Blanter,et al.  Internal Friction in Metallic Materials: A Handbook , 2010 .

[15]  P. Hodgson,et al.  Cytotoxicity of Titanium and Titanium Alloying Elements , 2010, Journal of dental research.

[16]  Leszek B. Magalas,et al.  Mechanical spectroscopy, internal friction and ultrasonic attenuation: Collection of works , 2009 .

[17]  C. Szczepanski,et al.  Effects of preferred orientation on Snoek phenomena in commercial steels , 2009 .

[18]  R. Caram,et al.  Anelastic spectroscopy in a Ti alloy used as biomaterial , 2009 .

[19]  W. Ho A comparison of tensile properties and corrosion behavior of cast Ti–7.5Mo with c.p. Ti, Ti–15Mo and Ti–6Al–4V alloys , 2008 .

[20]  R. Caram,et al.  Development of Ti-Mo alloys for biomedical applications: Microstructure and electrochemical characterization , 2007 .

[21]  M. Weller The Snoek relaxation in bcc metals - From steel wire to meteorites , 2006 .

[22]  L. B. Magalas The Snoek-Köster (SK) Relaxation and Dislocation-Enhanced Snoek Effect (DESE) in Deformed Iron , 2006 .

[23]  O. Florêncio,et al.  Stress-induced ordering due heavy interstitial atoms in Nb–0.3 wt.% Ti alloys , 2005 .

[24]  Ashutosh Kumar Singh,et al.  Effect of thermomechanical processing on evolution of various phases in Ti–Nb–Zr alloys , 2004 .

[25]  L. B. Magalas,et al.  Interaction of dissolved atoms and relaxation due to interstitial atoms in hcp metals , 2004 .

[26]  H. Numakura,et al.  Interaction between substitutional and interstitial solute atoms in α iron studied by isothermal mechanical spectroscopy , 2004 .

[27]  O. Florêncio,et al.  Anelastic relaxation processes due oxygen in Nb-3.1 at.% Ti alloys , 2004 .

[28]  J. Parker,et al.  The use of internal friction techniques as a quality control tool in the mild steel industry , 2003 .

[29]  H. Numakura Mechanical Relaxation due to Interstitial Solutes in Metals , 2003 .

[30]  L. B. Magalas Mechanical Spectroscopy – Fundamentals , 2003 .

[31]  L. B. Magalas,et al.  Mechanical Spectroscopy and other Relaxation Spectroscopies , 2003 .

[32]  L. B. Magalas,et al.  Strain-Induced Interaction of Dissolved Atoms and Mechanical Relaxation in Solid Solutions. A Review , 2003 .

[33]  L. Magalas On the interaction of dislocations with interstitial atoms in BCC metals using mechanical spectroscopy: The cold work (CW) peak, the Snoek-Köster (SK) peak, and the Snoek-Kê-Köster (SKK) peak , 2003 .

[34]  G. Gremaud 3.3 Dislocation - Point Defect Interactions , 2001 .

[35]  L. B. Magalas,et al.  Carbon-substitutional interaction in austenite , 2000 .

[36]  C. Ju,et al.  Structure and properties of cast binary Ti-Mo alloys. , 1999, Biomaterials.

[37]  G. Haneczok Interaction of interstitial solute atoms in bcc metals , 1998 .

[38]  L. Magalas Snoek-Köster Relaxation. New Insights - New Paradigms , 1996 .

[39]  L. B. Magalas,et al.  Mechanical Spectroscopy of the Carbon Snoek Relaxation in Ultra-High Purity Iron , 1996 .

[40]  M. Weller Anelastic Relaxation of Point Defects in Cubic Crystals , 1996 .

[41]  H. Numakura,et al.  The Snoek Relaxation in Dilute Ternary bcc Alloys. A Review , 1996 .

[42]  L. B. Magalas,et al.  Effect of Texture on the Snoek Relaxation in a Commercial Rolled Steel , 1996 .

[43]  O. Florêncio,et al.  Internal Friction Measurements in Nb-0.3 wt. % Ti Containing Oxygen , 1996 .

[44]  O. Florêncio,et al.  Anelastic behaviour in NbTi alloys containing interstitial elements , 1994 .

[45]  L. B. Magalas,et al.  Theoretical basis and general applicability of the coupling model to relaxations in coupled systems , 1994 .

[46]  G. Haneczok,et al.  Internal Friction Studies on Oxygen-Oxygen Interaction in Niobium. I. Experimental Results and Application of Previous Interpretations , 1992 .

[47]  L. B. Magalas,et al.  THE DISLOCATION-ENHACED SNOEK EFFECT (DESE) IN HIGH PURITY IRON DOPED WITH DIFFERENT AMOUNTS OF CARBON , 1987 .

[48]  H. Hilhorst,et al.  On the approach of the stationary state in Kauffman's random Boolean network , 1987 .

[49]  L. Magalas,et al.  THE DISLOCATION-ENHANCED SNOEK EFFECT - DESE IN IRON , 1985 .

[50]  Seeger,et al.  Dislocation-enhanced induced Snoek peak associated with heavy interstitials in the presence of kinks moving harmonically in anisotropic body-centered-cubic metals. , 1985, Physical review. B, Condensed matter.

[51]  E. W. Collings,et al.  The physical metallurgy of titanium alloys , 1984 .

[52]  L. Magalas,et al.  THE DISLOCATION-ENHANCED SNOEK PEAK IN Fe-C ALLOYS , 1983 .

[53]  G. Schoeck THE COLD WORK PEAK , 1982 .

[54]  I. Ritchie,et al.  The diffusion of oxygen in alpha-zirconium , 1977 .

[55]  H. Rosinger,et al.  Anelastic relaxation and the diffusion of oxygen in alpha-zirconium , 1976 .

[56]  K. M. Browne Mechanical relaxation and diffusion of interstitial atoms in H.C.P. metals , 1972 .

[57]  B. S. Berry,et al.  Anelastic Relaxation in Crystalline Solids , 1972 .

[58]  F. Povolo,et al.  Anelastic behaviour of isolated point defects in crystals of h.c.p. structure , 1967 .

[59]  F. Povolo,et al.  Mechanical relaxation modes of paired point defects in h.c.p. crystals , 1966 .

[60]  J. L. Snoek Effect of small quantities of carbon and nitrogen on the elastic and plastic properties of iron , 1941 .