Toida's Conjecture is True

Let $S$ be a subset of the units in ${\bf Z_n}$. Let ${\Gamma}$ be a circulant graph of order $n$ (a Cayley graph of ${\bf Z_n}$) such that if $ij\in E({\Gamma})$, then $i - j$ (mod $n$) $\in S$. Toida conjectured that if $\Gamma'$ is another circulant graph of order $n$, then ${\Gamma}$ and ${\Gamma '}$ are isomorphic if and only if they are isomorphic by a group automorphism of ${\bf Z_n}$ In this paper, we prove that Toida's conjecture is true. We further prove that Toida's conjecture implies Zibin's conjecture, a generalization of Toida's conjecture.

[1]  László Babai,et al.  Isomorphism problem for a class of point-symmetric structures , 1977 .

[2]  M. Klin,et al.  The isomorphism problem for circulant graphs via Schur ring theory , 1999, Codes and Association Schemes.

[3]  Peter Frankl,et al.  Isomorphisms of Cayley graphs. II , 1979 .

[4]  G. Sabidussi The composition of graphs , 1959 .

[5]  Mikhail E. Muzychuk,et al.  Ádám's Conjecture is True in the Square-Free Case , 1995, J. Comb. Theory, Ser. A.

[6]  Cai Heng Li,et al.  On isomorphisms of finite Cayley graphs--a survey , 2002, Discret. Math..

[7]  Edward Dobson,et al.  Isomorphism problem for Cayley graphs of Zp3 , 1995, Discret. Math..

[8]  Shunichi Toida,et al.  A note on Ádám's conjecture , 1977, J. Comb. Theory, Ser. B.

[9]  Mikhail E. Muzychuk,et al.  On the isomorphism problem for cyclic combinatorial objects , 1999, Discret. Math..

[10]  Mikhail Muzychuk On the isomorphism problem for cyclic combinatorial objects , 1999 .

[11]  Elwood S. Buffa,et al.  Graph Theory with Applications , 1977 .

[12]  N. S. Barnett,et al.  Private communication , 1969 .

[13]  B. Elspas,et al.  Graphs with circulant adjacency matrices , 1970 .

[14]  W. Scott,et al.  Group Theory. , 1964 .

[15]  James Turner Point-symmetric graphs with a prime number of points , 1967 .

[16]  Mikhail E. Muzychuk,et al.  On Ádám's conjecture for circulant graphs , 1997, Discret. Math..

[17]  Mikhail E. Muzychuk On Ádám's conjecture for circulant graphs , 1997, Discret. Math..