Toida's Conjecture is True
暂无分享,去创建一个
[1] László Babai,et al. Isomorphism problem for a class of point-symmetric structures , 1977 .
[2] M. Klin,et al. The isomorphism problem for circulant graphs via Schur ring theory , 1999, Codes and Association Schemes.
[3] Peter Frankl,et al. Isomorphisms of Cayley graphs. II , 1979 .
[4] G. Sabidussi. The composition of graphs , 1959 .
[5] Mikhail E. Muzychuk,et al. Ádám's Conjecture is True in the Square-Free Case , 1995, J. Comb. Theory, Ser. A.
[6] Cai Heng Li,et al. On isomorphisms of finite Cayley graphs--a survey , 2002, Discret. Math..
[7] Edward Dobson,et al. Isomorphism problem for Cayley graphs of Zp3 , 1995, Discret. Math..
[8] Shunichi Toida,et al. A note on Ádám's conjecture , 1977, J. Comb. Theory, Ser. B.
[9] Mikhail E. Muzychuk,et al. On the isomorphism problem for cyclic combinatorial objects , 1999, Discret. Math..
[10] Mikhail Muzychuk. On the isomorphism problem for cyclic combinatorial objects , 1999 .
[11] Elwood S. Buffa,et al. Graph Theory with Applications , 1977 .
[12] N. S. Barnett,et al. Private communication , 1969 .
[13] B. Elspas,et al. Graphs with circulant adjacency matrices , 1970 .
[14] W. Scott,et al. Group Theory. , 1964 .
[15] James Turner. Point-symmetric graphs with a prime number of points , 1967 .
[16] Mikhail E. Muzychuk,et al. On Ádám's conjecture for circulant graphs , 1997, Discret. Math..
[17] Mikhail E. Muzychuk. On Ádám's conjecture for circulant graphs , 1997, Discret. Math..