Toward High-Speed 40-Gbit/s Transponders

Today a 40-Gbit/s data rate is agreed by major optical telecommunication players as the next step in the network evolution, with an actual deployment foreseen in the 2007-2008 timeframe. R&D activities on technologies for 40-Gbit/s products are currently active but the path to 40-Gbit/s transponders is not yet fully settled. In this paper, we review the different component technologies currently considered for the actual development and the implementation of future 40-Gbit/s transponders. Dedicated paragraphs are devoted to electronic ICs and electrooptical devices, along with considerations on the technical solutions ensuring suitable interconnections or integration of the different components. Such advanced transponders should be compliant with the requirements of the different segments of the optical transport market. Solutions derived from choices made at lower data rates are projected for the shortest transmission paths, based on conventional nonreturn to zero modulation. In the peculiar case of long-haul transmission, signal distortion resulting from fiber propagation impairments calls for the generation of alternative modulation formats at the transmitter side and the potential need for electronic processing at the receiver side. This obviously has a clear impact on both the transponder design and the individual components features. Finally, recent advances in the field of innovative "all-optical" transponders implementing optical regeneration are also reported

[1]  Russell A. Chipman,et al.  Advanced components and sub-system solutions for 40 Gb/s transmission , 2002 .

[2]  Y. Amamiya,et al.  120-Gb/s multiplexing and 110-Gb/s demultiplexing ICs , 2004, IEEE Journal of Solid-State Circuits.

[3]  D.G. Moodie,et al.  40 Gbit/s modulator with low drive voltage and high optical output power , 2001, Proceedings 27th European Conference on Optical Communication (Cat. No.01TH8551).

[4]  B. Razavi,et al.  Prospects of CMOS technology for high-speed optical communication circuits , 2001, GaAs IC Symposium. IEEE Gallium Arsenide Integrated Circuit Symposium. 23rd Annual Technical Digest 2001 (Cat. No.01CH37191).

[5]  R. Iga,et al.  A 40-gb/s InGaAlAs-InAlAs MQW n-i-n Mach-Zehnder Modulator with a drive Voltage of 2.3 V , 2005, IEEE Photonics Technology Letters.

[6]  Juerg Leuthold,et al.  A 42.7-Gb/s integrated balanced optical front end with record sensitivity , 2003, OFC 2003 Optical Fiber Communications Conference, 2003..

[7]  Alistair James Poustie,et al.  WDM-enabled, 40 Gb/s hybrid integrated all-optical regenerator , 2005 .

[8]  Ken-ichi Sato,et al.  Semiconductor light sources for 40-Gb/s transmission systems , 2002 .

[9]  Taiichi Otsuji,et al.  40-Gbit/s TDM transmission technologies based on ultra-high-speed ICs , 1999 .

[10]  R. Whiteman,et al.  Optical modulators for fiber systems , 2003, 25th Annual Technical Digest 2003. IEEE Gallium Arsenide Integrated Circuit (GaAs IC) Symposium, 2003..

[11]  Hai Tao,et al.  A 40-43Gb/s clock and data recovery IC with integrated SFI-5 1:16 demultiplexer in SiGe technology , 2003, 2003 IEEE International Solid-State Circuits Conference, 2003. Digest of Technical Papers. ISSCC..

[12]  S. Lanne,et al.  Practical considerations for optical polarization-mode dispersion compensators , 2004, Journal of Lightwave Technology.

[13]  O. A. Sab Forward error correction techniques , 2003, OFC 2003 Optical Fiber Communications Conference, 2003..

[14]  F. Blache,et al.  42 GHz bandwidth InGaAlAs/InP electro absorption modulator with sub-volt modulation drive capability in a 50 nm spectral range , 2004, 16th IPRM. 2004 International Conference on Indium Phosphide and Related Materials, 2004..

[15]  S. Chandrasekhar,et al.  Low-voltage high-speed travelling wave InGaAsP-InP phase modulator , 2004, IEEE Photonics Technology Letters.

[16]  Yutaka Miyamoto,et al.  40 Gbit/s optical receiver module using a flip-chip bonding technique for device interconnection , 1998 .

[17]  A. Umbach,et al.  High-speed, high-power 1.55 μm photodetectors , 2001 .

[18]  G. Li,et al.  Optical intensity modulators for digital and analog applications , 2003 .

[19]  R. Walker High-speed III-V semiconductor intensity modulators , 1991 .

[20]  R. E. Wagner,et al.  Phenomenological approach to polarisation dispersion in long single-mode fibres , 1986 .

[21]  E.A. Sovero,et al.  STS-768 multiplexer with full rate output data retimer in InP HBT , 2002, 24th Annual Technical Digest Gallium Arsenide Integrated Circuit (GaAs IC) Symposiu.

[22]  F. Lelarge,et al.  High performance evanescent edge coupled waveguide unitraveling-carrier photodiodes for >40-gb/s optical receivers , 2004, IEEE Photonics Technology Letters.

[23]  B. Wedding 43 Gbit/s transmission over 210 km SMF with a directly modulated laser diode , 2003 .

[24]  Bruno Lavigne,et al.  All-Optical Regeneration: Principles and WDM Implementation , 2002 .

[25]  K. Ohhata,et al.  A low-jitter 16:1 MUX and a high-sensitivity 1:16 DEMUX with integrated 39.8 to 43GHz VCO for OC-768 communication systems , 2004, 2004 IEEE International Solid-State Circuits Conference (IEEE Cat. No.04CH37519).

[26]  M. Nissov,et al.  Forward error correction techniques in long-haul optical transmission systems , 2001, LEOS 2001. 14th Annual Meeting of the IEEE Lasers and Electro-Optics Society (Cat. No.01CH37242).

[27]  R. Saunders,et al.  SiGe equalizer IC for PMD mitigation and signal optimization of 40 Gbits/s transmission , 2005, OFC/NFOEC Technical Digest. Optical Fiber Communication Conference, 2005..

[28]  T. Suzuki,et al.  144-Gbit/s selector and 100-Gbit/s 4:1 multiplexer using InP HEMTs , 2004, 2004 IEEE MTT-S International Microwave Symposium Digest (IEEE Cat. No.04CH37535).

[29]  S. Chandrasekhar,et al.  RZ-DPSK transmission using a 42.7-Gb/s integrated balanced optical front end with record sensitivity , 2004, Journal of Lightwave Technology.

[30]  Hideki Fukano,et al.  40 Gbit/s electroabsorption modulators with 1.1 V driving voltage , 2004 .

[31]  Behzad Razavi Prospects of CMOS technology for high-speed optical communication circuits , 2001 .

[32]  G. Unterborsch,et al.  Ultrafast, high-power 1.55 /spl mu/m side-illuminated photodetector with integrated spot size converter , 2000, Optical Fiber Communication Conference. Technical Digest Postconference Edition. Trends in Optics and Photonics Vol.37 (IEEE Cat. No. 00CH37079).

[33]  T. Nakata,et al.  40-Gbps waveguide avalanche photodiodes , 2005, OFC/NFOEC Technical Digest. Optical Fiber Communication Conference, 2005..

[34]  T. Nagatsuma,et al.  110-GHz, 50%-efficiency mushroom-mesa waveguide p-i-n photodiode for a 1.55-/spl mu/m wavelength , 1994, IEEE Photonics Technology Letters.

[35]  Richard Schatz,et al.  40 Gb/s transmission experiment using directly modulated 1.55 /spl mu/m DBR lasers , 2003, International Conference onIndium Phosphide and Related Materials, 2003..

[36]  Shoichiro Asano,et al.  Field trial of GMPLS triple plane integration for 40 Gbit/s dynamically reconfigurable wavelength path network , 2005 .

[37]  Bruno Lavigne,et al.  First demonstration of all-optical clock recovery at 40 GHz with standard-compliant jitter characteristics based on a quantum-dots self-pulsating semiconductor laser , 2005 .

[38]  O. Mitomi,et al.  Millimeter-wave Ti:LiNbO/sub 3/ optical modulators , 1998 .

[39]  Nobuhiko Kikuchi,et al.  A 40-Gbit/s electro-absorption modulator with a record modulation efficiency (50 GHz/V) enhanced by a novel technique of hybrid integration on the driver IC , 2003, The 16th Annual Meeting of the IEEE Lasers and Electro-Optics Society, 2003. LEOS 2003..

[40]  H.-D. Wohlmuth,et al.  A 60-Gb/s 0.7-V 10-mW monolithic transformer-coupled 2:1 multiplexer in 90 nm CMOS , 2004, IEEE Compound Semiconductor Integrated Circuit Symposium, 2004..

[41]  K. Yamada,et al.  EAM-integrated DFB laser modules with more than 40-GHz bandwidth , 2001, IEEE Photonics Technology Letters.

[42]  N. Tscherptner,et al.  High-responsivity and high-speed evanescently-coupled avalanche photodiodes , 2003 .

[43]  Emmanuel Desurvire Optical communications in 2025 , 2005 .

[44]  Y. Akage,et al.  High-speed electroabsorption modulators buried with ruthenium-doped SI-InP , 2004, IEEE Photonics Technology Letters.

[45]  H. Ito,et al.  High-speed and high-output InP-InGaAs unitraveling-carrier photodiodes , 2004, IEEE Journal of Selected Topics in Quantum Electronics.

[46]  Wilfried Idler,et al.  Field trial at 40 Gbit/s over 28.6 and 86 km of standard singlemode fibre using quaternary dispersion supported transmission , 1998 .

[47]  Jean-Christophe Antona,et al.  Tolerance to dispersion compensation parameters of six , 2003 .

[48]  Duc Chu,et al.  50 GHz high output voltage distributed amplifiers for 40 Gb/s EO modulator driver application , 2002, 2002 IEEE MTT-S International Microwave Symposium Digest (Cat. No.02CH37278).

[49]  E.L. Wooten,et al.  A review of lithium niobate modulators for fiber-optic communications systems , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[50]  J. P. Praseuth,et al.  Waveguide AlInAs/GaAlInAs avalanche photodiode with a gain-bandwidth product over 160 GHz , 1997 .

[51]  M. Okayasu,et al.  40-Gbit/s receiver with -21 dBm sensitivity employing filterless semiconductor optical amplifier , 2003, OFC 2003 Optical Fiber Communications Conference, 2003..

[52]  A. Leven,et al.  High gain-bandwidth differential distributed InP D-HBT driver amplifiers with large (11.3 V/sub pp/) output swing at 40 Gb/s , 2004, IEEE Journal of Solid-State Circuits.

[53]  Patrick Brindel,et al.  40 Gbit/s optical 2R regenerator based on passive saturable absorber for WDM long-haul transmissions , 2002, Optical Fiber Communication Conference and Exhibit.