How Far Do Animals Go? Determinants of Day Range in Mammals

Day range (daily distance traveled) is an important measure for understanding relationships between animal distributions and food resources. However, our understanding of variation in day range across species is limited. Here we present a day range model and compare predictions against a comprehensive analysis of mammalian day range. As found in previous studies, day range scales near the \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $$1/ 4$$ \end{document} power of body mass. Also, consistent with model predictions, taxonomic groups differ in the way day range scales with mass, associated with the most common diet types and foraging habitats. Faunivores have the longest day ranges and steepest body mass scaling. Frugivores and herbivores show intermediate and low scaling exponents, respectively. Day range in primates did not scale with mass, which may be consistent with the prediction that three‐dimensional foraging habitats lead to lower exponents. Day ranges increase with group size in carnivores but not in other taxonomic groups.

[1]  Montague W. Demment,et al.  A Nutritional Explanation for Body-Size Patterns of Ruminant and Nonruminant Herbivores , 1985, The American Naturalist.

[2]  D. E. Davis,et al.  Principles in mammalogy , 1963 .

[3]  A. Vézina Empirical relationships between predator and prey size among terrestrial vertebrate predators , 1985, Oecologia.

[4]  Andrew Rambaut,et al.  Comparative analysis by independent contrasts (CAIC): an Apple Macintosh application for analysing comparative data , 1995, Comput. Appl. Biosci..

[5]  C. Nunn,et al.  Allometric Slopes and Independent Contrasts: A Comparative Test of Kleiber’s Law in Primate Ranging Patterns , 2000, The American Naturalist.

[6]  Theodore Garland,et al.  Phylogenetic Analysis of Covariance by Computer Simulation , 1993 .

[7]  J. Damuth Interspecific allometry of population density in mammals and other animals: the independence of body mass and population energy‐use , 1987 .

[8]  K. Gaston,et al.  Pattern and Process in Macroecology , 2000 .

[9]  T. Garland,et al.  Procedures for the Analysis of Comparative Data Using Phylogenetically Independent Contrasts , 1992 .

[10]  J. L. Gittleman Carnivore body size: Ecological and taxonomic correlates , 1985, Oecologia.

[11]  I. Linn,et al.  The Natural History of Mammals , 1965 .

[12]  M. Demment The scaling of ruminoreticulum size with body weight in East African ungulates , 1982 .

[13]  A. Purvis A composite estimate of primate phylogeny. , 1995, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[14]  J. Damuth Cope's rule, the island rule and the scaling of mammalian population density , 1993, Nature.

[15]  Han Olff,et al.  Fractal geometry predicts varying body size scaling relationships for mammal and bird home ranges , 2002, Nature.

[16]  J. Felsenstein Phylogenies and the Comparative Method , 1985, The American Naturalist.

[17]  T. Caro,et al.  Foraging costs in social carnivores , 1997, Animal Behaviour.

[18]  T. Garland,et al.  Phylogenetic analysis of coadaptation in behavior, diet, and body size in the African antelope , 2000 .

[19]  D. Kelt,et al.  The Ecology and Macroecology of Mammalian Home Range Area , 2001, The American Naturalist.

[20]  J. L. Gittleman,et al.  Constraints on group size in primates and carnivores: population density and day-range as assays of exploitation competition , 1993, Behavioral Ecology and Sociobiology.

[21]  G. Belovsky Optimal foraging and community structure: The allometry of herbivore food selection and competition , 1997, Evolutionary Ecology.

[22]  S. Creel Cooperative hunting and group size: assumptions and currencies , 1997, Animal Behaviour.

[23]  J. Damuth,et al.  Population density and body size in mammals , 1981, Nature.

[24]  Kate E. Jones,et al.  An optimum body size for mammals? Comparative evidence from bats , 1997 .

[25]  A. Purvis,et al.  Body Size, Diet and Population Density in Afrotropical Forest Mammals: A Comparison with Neotropical Species , 1997 .

[26]  J. L. Gittleman,et al.  Predicting extinction risk in declining species , 2000, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[27]  M. Pagel Inferring the historical patterns of biological evolution , 1999, Nature.

[28]  J. Wilmshurst,et al.  The allometry of patch selection in ruminants , 2000, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[29]  Susan C. Roberts,et al.  Energetic constraints on the diet of terrestrial carnivores , 1999, Nature.

[30]  I. Gordon,et al.  Sources of variation in the foraging efficiency of grazing ruminants , 1996 .

[31]  D. Lovejoy,et al.  The Economy of Nature , 1977 .

[32]  E. Martins The Comparative Method in Evolutionary Biology, Paul H. Harvey, Mark D. Pagel. Oxford University Press, Oxford (1991), vii, + 239 Price $24.95 paperback , 1992 .

[33]  M. Kleiber Body size and metabolism , 1932 .

[34]  C. R. White,et al.  Mammalian basal metabolic rate is proportional to body mass2/3 , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[35]  J. Honacki,et al.  Mammal species of the world : a taxonomic and geographic reference , 1982 .

[36]  Walter Jetz,et al.  The Scaling of Animal Space Use , 2004, Science.

[37]  Michael M. Miyamoto,et al.  Molecular and Morphological Supertrees for Eutherian (Placental) Mammals , 2001, Science.

[38]  Stephen R. Carpenter,et al.  Ecological community description using the food web, species abundance, and body size , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[39]  K. Redford,et al.  Body Size, Diet, and Population Density of Neotropical Forest Mammals , 1986, The American Naturalist.

[40]  I. Gordon,et al.  Modelling the nutritional ecology of ungulate herbivores: evolution of body size and competitive interactions , 1992, Oecologia.

[41]  James H. Brown,et al.  Allometric scaling of plant energetics and population density , 1998, Nature.

[42]  W. R. Eadie,et al.  The natural history of mammals , 1954 .

[43]  J. L. Gittleman,et al.  A Common Rule for the Scaling of Carnivore Density , 2002, Science.

[44]  J. L. Gittleman,et al.  Carnivore home-range size, metabolic needs and ecology , 1982, Behavioral Ecology and Sociobiology.

[45]  Theodore Stankowich,et al.  The African Wild Dog: Behavior, Ecology, and Conservation , 2003 .

[46]  J. L. Gittleman,et al.  Building large trees by combining phylogenetic information: a complete phylogeny of the extant Carnivora (Mammalia) , 1999, Biological reviews of the Cambridge Philosophical Society.

[47]  D. H. Vuren,et al.  ENERGETIC CONSTRAINTS AND THE RELATIONSHIP BETWEEN BODY SIZE AND HOME RANGE AREA IN MAMMALS , 1999 .

[48]  T. Garland Scaling the Ecological Cost of Transport to Body Mass in Terrestrial Mammals , 1983, The American Naturalist.