Chapter 1 Principal structures

Publisher Summary Dynamical systems have grown from various roots into a field of great diversity that interacts with many branches of mathematics as well as with the sciences. This chapter presents a survey to describe the general framework for several principal areas of the theory of dynamical systems. A possible use of this survey is as an introduction to mathematicians unfamiliar with dynamics, and it may be interesting to experts as an overview of a diverse field. The chapter focuses on examples, motivations, informal explanations, and discussion of key special cases or simplified versions of general results of dynamical systems. The chapter introduces a collection of important notions in generic terms—that is, without relying on any specific structure of the dynamical system. It introduces basic examples and intersperse further examples, as well as comments on previously introduced ones. The central structural elements are presented in the chapter in the order: the notions of equivalence, principal constructions, recurrence, and orbit growth.

[1]  Robert J. Zimmer,et al.  Ergodic Theory and Semisimple Groups , 1984 .

[2]  A. N. Zemlyakov,et al.  Topological transitivity of billiards in polygons , 1975 .

[3]  Eduard Zehnder,et al.  Symplectic Invariants and Hamiltonian Dynamics , 1994 .

[4]  V. Arnold SMALL DENOMINATORS AND PROBLEMS OF STABILITY OF MOTION IN CLASSICAL AND CELESTIAL MECHANICS , 1963 .

[5]  D. Ornstein Ergodic theory, randomness, and dynamical systems , 1974 .

[6]  V. Arnold Mathematical Methods of Classical Mechanics , 1974 .

[7]  N. Chernov Statistical properties of piecewise smooth hyperbolic systems in high dimensions , 1999 .

[8]  F. Dillen,et al.  Contact geometry , 2003 .

[9]  Y. Katznelson,et al.  The differentiability of the conjugation of certain diffeomorphisms of the circle , 1989, Ergodic Theory and Dynamical Systems.

[10]  Ralph Abraham,et al.  Foundations Of Mechanics , 2019 .

[11]  P. Eberlein Structure of manifolds of nonpositive curvature , 1985 .

[12]  Y. Sinai,et al.  Mixing for some classes of special flows over rotations of the circle , 1992 .

[13]  R. Robinson Structural Stability Theorems , 1976 .

[14]  F. Ledrappier Propriétés Ergodiques Des Mesures De Sinaï , 1984 .

[15]  A. Kochergin Nonsingular saddle points and the absence of mixing , 1976 .

[16]  Marina Ratner,et al.  On Raghunathan’s measure conjecture , 1991 .

[17]  S. Newhouse Entropy and volume , 1988, Ergodic Theory and Dynamical Systems.

[18]  Steven P. Kerckhoff,et al.  Ergodicity of billiard flows and quadratic differentials , 1986 .

[19]  V. Rokhlin LECTURES ON THE ENTROPY THEORY OF MEASURE-PRESERVING TRANSFORMATIONS , 1967 .

[20]  A. Katok,et al.  Construction of weakly mixing diffeomorphisms preserving measurable Riemannian metric and smooth measure , 1999 .

[21]  Dmitry Kleinbock,et al.  Chapter 11 Dynamics of subgroup actions on homogeneous spaces of lie groups and applications to number theory , 2002 .

[22]  W. Veech,et al.  Periodic points and invariant pseudomeasures for toral endomorphisms , 1986, Ergodic Theory and Dynamical Systems.

[23]  Henri Poincaré,et al.  méthodes nouvelles de la mécanique céleste , 1892 .

[24]  Amie Wilkinson,et al.  Stable ergodicity of the time-one map of a geodesic flow , 1998, Ergodic Theory and Dynamical Systems.

[25]  Y. Pesin,et al.  Topological pressure and the variational principle for noncompact sets , 1984 .

[26]  K. Schmidt,et al.  SYMBOLIC AND ALGEBRAIC DYNAMICAL SYSTEMS , 2000 .

[27]  C. Robinson,et al.  Nonabsolutely continuous foliations for an Anosov diffeomorphism , 1980 .

[28]  Marina Ratner,et al.  Raghunathan’s topological conjecture and distributions of unipotent flows , 1991 .

[29]  D. Ruelle Statistical Mechanics: Rigorous Results , 1999 .

[30]  E. Lindenstrauss Pointwise theorems for amenable groups , 1999 .

[31]  G. Belitskii,et al.  EQUIVALENCE AND NORMAL FORMS OF GERMS OF SMOOTH MAPPINGS , 1978 .

[32]  Shuhei Hayashi Connecting invariant manifolds and the solution of the $C^1$ stability and $\Omega$-stability conjectures for flows , 1997 .

[33]  W. Veech Gauss measures for transformations on the space of interval exchange maps , 1982 .

[34]  Klaus Schmidt Dynamical Systems of Algebraic Origin , 1995 .

[35]  A. V. Kočergin ON MIXING IN SPECIAL FLOWS OVER A SHIFTING OF SEGMENTS AND IN SMOOTH FLOWS ON SURFACES , 1975 .

[36]  Wolfgang Krieger On ergodic flows and the isomorphism of factors , 1976 .

[37]  C. Pugh The C1+α hypothesis in Pesin theory , 1984 .

[38]  J. Moser Stable and Random Motions in Dynamical Systems: With Special Emphasis on Celestial Mechanics. , 1973 .

[39]  F. Fer,et al.  Thermodynamic formalism. The mathematical structures of classical equilibrium statistical mechanics : Vol. 5. by David Ruelle, Addison Wesley, Reading, MA, 1978, $ 21.50 , 1980 .

[40]  S. Smale Differentiable dynamical systems , 1967 .

[41]  Benjamin Weiss,et al.  Entropy and isomorphism theorems for actions of amenable groups , 1987 .

[42]  G. Birkhoff Proof of the Ergodic Theorem , 1931, Proceedings of the National Academy of Sciences.

[43]  V F Lazutkin,et al.  THE EXISTENCE OF CAUSTICS FOR A BILLIARD PROBLEM IN A CONVEX DOMAIN , 1973 .

[44]  P. Walters Introduction to Ergodic Theory , 1977 .

[45]  Carlos Gutierrez,et al.  A counter-example to a C2 closing lemma , 1987, Ergodic Theory and Dynamical Systems.

[46]  David Ruelie,et al.  Statistical mechanics on a compact set with $Z^\nu $ action satisfying expansiveness and specification , 1972 .

[47]  Benjamin Weiss,et al.  Ergodic theory of amenable group actions. I: The Rohlin lemma , 1980 .

[48]  A. Katok,et al.  Smooth models of Thurston's pseudo-Anosov maps , 1982 .

[49]  N. Haydn,et al.  Topological entropy of generalized polygon exchanges , 1995, math/9501227.

[50]  D. Ornstein,et al.  The ergodic theoretical proof of Szemerédi's theorem , 1982 .

[51]  E. A. Sataev ON THE NUMBER OF INVARIANT MEASURES FOR FLOWS ON ORIENTABLE SURFACES , 1975 .

[52]  A. Katok,et al.  Slow entropy type invariants and smooth realization of commuting measure-preserving transformations , 1997 .

[53]  N. Kryloff,et al.  La Theorie Generale De La Mesure Dans Son Application A L'Etude Des Systemes Dynamiques De la Mecanique Non Lineaire , 1937 .

[54]  Wolfgang Krieger,et al.  On entropy and generators of measure-preserving transformations , 1970 .

[55]  S. Newhouse,et al.  Corrections to “Continuity properties of entropy” , 1990 .

[56]  W. D. Melo,et al.  ONE-DIMENSIONAL DYNAMICS , 2013 .

[57]  I. Nikolaev,et al.  Flows on 2-dimensional Manifolds: An Overview , 1999 .

[58]  Y. Katznelson,et al.  The absolute continuity of the conjugation of certain diffeomorphisms of the circle , 1989, Ergodic Theory and Dynamical Systems.

[59]  F. Greenleaf,et al.  Invariant means on topological groups and their applications , 1969 .

[60]  B. Jiang,et al.  Lectures on Nielsen fixed point theory , 1983 .

[61]  W. Szlenk,et al.  An introduction to the theory of smooth dynamical systems , 1984 .

[62]  Douglas Lind,et al.  An Introduction to Symbolic Dynamics and Coding , 1995 .

[63]  J. Yoccoz Introduction to Hyperbolic Dynamics , 1995 .

[64]  J. Franks,et al.  Anomalous anosov flows , 1980 .

[65]  R. Bowen Entropy for group endomorphisms and homogeneous spaces , 1971 .

[66]  V. V. Ryzhikov Stochastic intertwinings and multiple mixing of dynamical systems , 1996 .

[67]  A. Katok Bernoulli Diffeomorphisms on surfaces , 1979 .

[68]  M. Ratner Rigidity of horocycle flows , 1982 .

[69]  H. Furstenberg,et al.  The Structure of Distal Flows , 1963 .

[70]  Alan F. Beardon,et al.  Iteration of Rational Functions: Complex Analytic Dynamical Systems , 1991 .

[71]  A. Katok Lyapunov exponents, entropy and periodic orbits for diffeomorphisms , 1980 .

[72]  Kenneth S. Brown,et al.  Cohomology of Groups , 1982 .

[73]  R. Bowen Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms , 1975 .

[74]  Frank Blume,et al.  Possible rates of entropy convergence , 1997, Ergodic Theory and Dynamical Systems.

[75]  Benjamin Weiss,et al.  Equivalence of measure preserving transformations , 1982 .

[77]  V. Alekseev QUASIRANDOM DYNAMICAL SYSTEMS. I. QUASIRANDOM DIFFEOMORPHISMS , 1968 .

[78]  Sébastien Ferenczi,et al.  Complexity of sequences and dynamical systems , 1999, Discret. Math..

[79]  C. Liverani Decay of correlations , 1995 .

[80]  Howard Masur,et al.  Hausdorff dimension of the set of nonergodic foliations of a quadratic differential , 1992 .

[81]  M. Brin,et al.  PARTIALLY HYPERBOLIC DYNAMICAL SYSTEMS , 1974 .

[82]  One-Dimensional Maps , 1997 .

[83]  M. Ratner Rigidity of time changes for horocycle flows , 1986 .

[84]  M. Raghunathan A proof of Oseledec’s multiplicative ergodic theorem , 1979 .

[85]  Robert Ellis,et al.  Lectures in Topological Dynamics , 1969 .

[86]  S. Mozes Mixing of all orders of Lie groups actions , 1992 .

[87]  H. Furstenberg,et al.  An application of number theory to ergodic theory and the construction of uniquely ergodic models , 1979 .

[88]  S. Kalikow Twofold mixing implies threefold mixing for rank one transformations , 1984, Ergodic Theory and Dynamical Systems.

[89]  M. R. Herman Sur la Conjugaison Différentiable des Difféomorphismes du Cercle a des Rotations , 1979 .

[90]  C. Pugh,et al.  The Closing Lemma , 1967 .

[91]  Ergodic flows of positive entropy can be time changed to becomeK-flows , 1977 .

[92]  P. Walters A dynamical proof of the multiplicative ergodic theorem , 1993 .

[93]  Y. Pesin CHARACTERISTIC LYAPUNOV EXPONENTS AND SMOOTH ERGODIC THEORY , 1977 .

[94]  Sébastien Ferenczi,et al.  Measure-theoretic complexity of ergodic systems , 1997 .

[95]  Ricardo Mañé,et al.  A proof of the C1 stability conjecture , 1987 .

[96]  L. Young,et al.  Nonexistence of SBR measures for some diffeomorphisms that are ‘Almost Anosov’ , 1995, Ergodic Theory and Dynamical Systems.

[97]  A. Katok,et al.  Differentiability, rigidity and Godbillon-Vey classes for Anosov flows , 1990 .

[98]  R. Robinson,et al.  Structural stability of C1 diffeomorphisms , 1976 .

[99]  J. Robbin A structural stability theorem , 1971 .

[100]  H. Dye ON GROUPS OF MEASURE PRESERVING TRANSFORMATIONS. I. , 1959 .

[101]  Benjamin Weiss,et al.  An amenable equivalence relation is generated by a single transformation , 1981, Ergodic Theory and Dynamical Systems.

[102]  A. Kelley The stable, center-stable, center, center-unstable, unstable manifolds , 1967 .

[103]  Mark Pollicott,et al.  Lectures on Ergodic Theory and Pesin Theory on Compact Manifolds , 1993 .

[104]  William Parry,et al.  Topics in Ergodic Theory , 1981 .

[105]  SOLUTIONS OF THE COHOMOLOGICAL EQUATION FOR AREA-PRESERVING FLOWS ON COMPACT SURFACES OF HIGHER GENUS , 1997 .

[106]  Y. Yomdin Volume growth and entropy , 1987 .

[107]  Frank Blume Minimal rates of entropy convergence for completely ergodic systems , 1998 .

[108]  J. Moser A rapidly convergent iteration method and non-linear partial differential equations - I , 1966 .

[109]  Michael Shub,et al.  Stably ergodic diffeomorphisms , 1994 .

[110]  Alex Furman Orbit equivalence rigidity , 1999 .

[111]  B. Host Mixing of all orders and pairwise independent joinings of systems with singular spectrum , 1991 .

[112]  L. Barreira,et al.  Lyapunov Exponents and Smooth Ergodic Theory , 2002 .

[113]  A. Dankner On Smale's Axiom A dynamical systems , 1978 .

[114]  M. Misiurewicz Topological conditional entropy , 1976 .

[115]  V. I. Oseledec A multiplicative ergodic theorem: Lyapunov characteristic num-bers for dynamical systems , 1968 .

[116]  D. Ornstein,et al.  A general ergodic theorem , 1960 .

[117]  M. Pollicott,et al.  Dynamical Systems and Ergodic Theory , 1998 .

[118]  Brian Marcus,et al.  Topological entropy and equivalence of dynamical systems , 1979 .

[119]  S. Lang,et al.  Introduction to Diophantine Approximations , 1995 .

[120]  H. Masur Interval Exchange Transformations and Measured Foliations , 1982 .

[121]  Michael Shub,et al.  Stably Ergodic Dynamical Systems and Partial Hyperbolicity , 1997, J. Complex..

[122]  R. Mañé,et al.  Ergodic Theory and Differentiable Dynamics , 1986 .

[123]  P. Halmos Lectures on ergodic theory , 1956 .

[124]  Differential Rigidity of Anosov Actions of Higher Rank Abelian Groups and Algebraic Lattice Actions , 1997, dg-ga/9704011.

[125]  David Fried Rationality for isolated expansive sets , 1987 .

[126]  Gerhard Knieper Chapter 6 Hyperbolic dynamics and riemannian geometry , 2002 .

[127]  Karl Petersen Ergodic Theory , 1983 .

[128]  E. Gutkin,et al.  Billiards in polygons , 1986 .

[129]  A. Katok,et al.  First cohomology of Anosov actions of higher rank abelian groups and applications to rigidity , 1994 .

[130]  M. Shub Dynamical systems, filtrations and entropy , 1974 .

[131]  C. Robinson Dynamical Systems: Stability, Symbolic Dynamics, and Chaos , 1994 .

[132]  J. Palis,et al.  Hyperbolic Nonwandering Sets on Two-Dimensional Manifolds , 1973 .

[133]  Christophe Genecand Transversal Homoclinic Orbits near Elliptic Fixed Points of Area-preserving Diffeomorphisms of the Plane , 1993 .

[134]  S. Kakutani,et al.  Structure and continuity of measurable flows , 1942 .

[135]  E. Gutkin Billiards on almost integrable polyhedral surfaces , 1984, Ergodic Theory and Dynamical Systems.

[136]  I. Holopainen Riemannian Geometry , 1927, Nature.

[137]  M. R. Herman Différentiabilité optimale et contre-exemples à la fermeture en topologie C∞ des orbites récurrentes de flots hamiltoniens , 1991 .

[138]  A. Katok,et al.  Caustics for inner and outer billiards , 1995 .

[139]  N. Haydn,et al.  Topological entropy of polygon exchange transformations and polygonal billiards , 1997, Ergodic Theory and Dynamical Systems.

[140]  Boris Hasselblatt,et al.  Introduction to the Modern Theory of Dynamical Systems: INTRODUCTION: WHAT IS LOW-DIMENSIONAL DYNAMICS? , 1995 .

[141]  M. G. Nadkarni,et al.  Spectral Theory of Dynamical Systems , 1998 .

[142]  J. Lewowicz Expansive homeomorphisms of surfaces , 1989 .

[143]  D. Dolgopyat On mixing properties of compact group extensions of hyperbolic systems , 2002 .

[144]  J. Yoccoz,et al.  Conjugaison différentiable des difféomorphismes du cercle dont le nombre de rotation vérifie une condition diophantienne , 1984 .

[145]  B. Kleiner,et al.  Separated nets in Euclidean space and Jacobians of biLipschitz maps , 1997, dg-ga/9703022.

[146]  Calvin C. Moore,et al.  Ergodic equivalence relations, cohomology, and von Neumann algebras. II , 1977 .

[147]  H. Furstenberg Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions , 1977 .

[148]  S. Newhouse,et al.  Continuity properties of entropy , 1989 .

[149]  William Parry,et al.  Entropy and generators in ergodic theory , 1966 .

[150]  A. Katok The growth rate for the number of singular and periodic orbits for a polygonal billiard , 1987 .

[151]  M. Misiurewicz,et al.  Combinatorial Dynamics and Entropy in Dimension One , 2000 .

[152]  P. Billingsley,et al.  Ergodic theory and information , 1966 .

[153]  M. Herman Construction d'un difféomorphisme minimal d'entropie topologique non nulle , 1981, Ergodic Theory and Dynamical Systems.

[154]  A. Katok Interval exchange transformations and some special flows are not mixing , 1980 .

[155]  Wolfgang Krieger On unique ergodicity , 1972 .

[156]  S. V. Fomin,et al.  Ergodic Theory , 1982 .

[157]  M. Boshernitzan A condition for minimal interval exchange maps to be uniquely ergodic , 1985 .

[158]  R. Mañé,et al.  An Ergodic Closing Lemma , 1982 .

[159]  B. Weiss,et al.  The finite multipliers of infinite ergodic transformations , 1978 .

[160]  A. Katok MONOTONE EQUIVALENCE IN ERGODIC THEORY , 1977 .

[161]  R. Phelps Lectures on Choquet's Theorem , 1966 .

[162]  Flots topologiquement transitifs sur les surfaces compactes sans bord: contrexemples à une conjecture de Katok , 1983, Ergodic Theory and Dynamical Systems.

[163]  A. Katok,et al.  APPROXIMATIONS IN ERGODIC THEORY , 1967 .

[164]  C. McMullen Lipschitz maps and nets in Euclidean space , 1998 .

[165]  Serge Tabachnikov,et al.  Rational billiards and flat structures , 2002 .

[166]  J. Mather,et al.  Action minimizing invariant measures for positive definite Lagrangian systems , 1991 .