Retinal Disease in Rpe 65-Deficient Mice : Comparison to Human Leber Congenital Amaurosis Due to RPE 65 Mutations

METHODS. Full-field electroretinograms (ERGs) were recorded from wild-type (C57BL/6; Rpe65 / ) and Rpe65 / mice at ages ranging from 1 month to 2 years. A physiologically based model of rod phototransduction activation was used to determine photoreceptor (P3) cell components of ERG photoresponses. A bipolar (P2) cell component was also derived. Photoreceptor and inner retinal thickness measurements were made by using optical coherence tomography in human RPE65-LCA.

[1]  Artur V. Cideciyan,et al.  Leber congenital amaurosis due to RPE65 mutations and its treatment with gene therapy , 2010, Progress in Retinal and Eye Research.

[2]  K. Yau,et al.  Deletion of GRK1 Causes Retina Degeneration through a Transducin-Independent Mechanism , 2010, The Journal of Neuroscience.

[3]  Y. Rotenstreich,et al.  Treatment of a retinal dystrophy, fundus albipunctatus, with oral 9-cis-β-carotene , 2009, British Journal of Ophthalmology.

[4]  Deniz Dalkara,et al.  Inner limiting membrane barriers to AAV-mediated retinal transduction from the vitreous. , 2009, Molecular therapy : the journal of the American Society of Gene Therapy.

[5]  G. Casadesus,et al.  Evaluation of 9-cis-retinyl acetate therapy in Rpe65-/- mice. , 2009, Investigative ophthalmology & visual science.

[6]  T. Aleman,et al.  Leber congenital amaurosis caused by Lebercilin (LCA5) mutation: Retained photoreceptors adjacent to retinal disorganization , 2009, Molecular vision.

[7]  Edwin M Stone,et al.  Defining the residual vision in leber congenital amaurosis caused by RPE65 mutations. , 2009, Investigative ophthalmology & visual science.

[8]  W. Hauswirth,et al.  High-efficiency transduction of the mouse retina by tyrosine-mutant AAV serotype vectors. , 2009, Molecular therapy : the journal of the American Society of Gene Therapy.

[9]  W. Hauswirth,et al.  Treatment of leber congenital amaurosis due to RPE65 mutations by ocular subretinal injection of adeno-associated virus gene vector: short-term results of a phase I trial. , 2008, Human gene therapy.

[10]  T. Aleman,et al.  Photoreceptor layer topography in children with leber congenital amaurosis caused by RPE65 mutations. , 2008, Investigative ophthalmology & visual science.

[11]  Edwin M Stone,et al.  Human gene therapy for RPE65 isomerase deficiency activates the retinoid cycle of vision but with slow rod kinetics , 2008, Proceedings of the National Academy of Sciences.

[12]  A. J. Roman,et al.  Usher syndromes due to MYO7A, PCDH15, USH2A or GPR98 mutations share retinal disease mechanism. , 2008, Human molecular genetics.

[13]  R. Roepman,et al.  Leber congenital amaurosis: Genes, proteins and disease mechanisms , 2008, Progress in Retinal and Eye Research.

[14]  W. Baehr,et al.  Rpe65-/- and Lrat-/- mice: comparable models of leber congenital amaurosis. , 2008, Investigative ophthalmology & visual science.

[15]  Kathleen A. Marshall,et al.  Safety and efficacy of gene transfer for Leber's congenital amaurosis. , 2008, The New England journal of medicine.

[16]  Nick Tyler,et al.  Effect of gene therapy on visual function in Leber's congenital amaurosis. , 2008, The New England journal of medicine.

[17]  K. Palczewski,et al.  Trafficking of Membrane-Associated Proteins to Cone Photoreceptor Outer Segments Requires the Chromophore 11-cis-Retinal , 2008, The Journal of Neuroscience.

[18]  J. Bennett,et al.  Novel AAV serotypes for improved ocular gene transfer , 2008, The journal of gene medicine.

[19]  A. J. Roman,et al.  Retinal laminar architecture in human retinitis pigmentosa caused by Rhodopsin gene mutations. , 2008, Investigative ophthalmology & visual science.

[20]  A. Vingrys,et al.  Rodent electroretinography: Methods for extraction and interpretation of rod and cone responses , 2008, Progress in Retinal and Eye Research.

[21]  E. Stone Leber congenital amaurosis - a model for efficient genetic testing of heterogeneous disorders: LXIV Edward Jackson Memorial Lecture. , 2007, American journal of ophthalmology.

[22]  T. Aleman,et al.  Centrosomal‐ciliary gene CEP290/NPHP6 mutations result in blindness with unexpected sparing of photoreceptors and visual brain: implications for therapy of Leber congenital amaurosis , 2007, Human mutation.

[23]  C. Grimm,et al.  R91W mutation in Rpe65 leads to milder early-onset retinal dystrophy due to the generation of low levels of 11-cis-retinal. , 2007, Human molecular genetics.

[24]  N. Drasdo,et al.  The length of Henle fibers in the human retina and a model of ganglion receptive field density in the visual field , 2007, Vision Research.

[25]  A. J. Roman,et al.  Inner retinal abnormalities in X-linked retinitis pigmentosa with RPGR mutations. , 2007, Investigative ophthalmology & visual science.

[26]  A. J. Roman,et al.  Electroretinographic analyses of Rpe65-mutant rd12 mice: developing an in vivo bioassay for human gene therapy trials of Leber congenital amaurosis. , 2007, Molecular vision.

[27]  A. J. Roman,et al.  Human cone photoreceptor dependence on RPE65 isomerase , 2007, Proceedings of the National Academy of Sciences.

[28]  Gerald H. Jacobs,et al.  Cone-based vision in the aging mouse , 2007, Vision Research.

[29]  T. Aleman,et al.  Evidence for retinal remodelling in retinitis pigmentosa caused by PDE6B mutation , 2007, British Journal of Ophthalmology.

[30]  Muna I. Naash,et al.  Efficient Non-Viral Ocular Gene Transfer with Compacted DNA Nanoparticles , 2006, PloS one.

[31]  T. Lamb,et al.  Phototransduction, dark adaptation, and rhodopsin regeneration the proctor lecture. , 2006, Investigative ophthalmology & visual science.

[32]  W. Hauswirth,et al.  Cortical visual function in the rd12 mouse model of Leber Congenital Amarousis (LCA) after gene replacement therapy to restore retinal function , 2006, Vision Research.

[33]  A. J. Roman,et al.  Remodeling of the human retina in choroideremia: rab escort protein 1 (REP-1) mutations. , 2006, Investigative ophthalmology & visual science.

[34]  K. Palczewski,et al.  Aberrant metabolites in mouse models of congenital blinding diseases: formation and storage of retinyl esters. , 2006, Biochemistry.

[35]  S. E. Barker,et al.  Effective gene therapy with nonintegrating lentiviral vectors , 2006, Nature Medicine.

[36]  M. Seeliger,et al.  Cone opsin mislocalization in Rpe65-/- mice: a defect that can be corrected by 11-cis retinal. , 2005, Investigative ophthalmology & visual science.

[37]  G. Fain,et al.  Opsin activation of transduction in the rods of dark‐reared Rpe65 knockout mice , 2005, The Journal of physiology.

[38]  W. Hauswirth,et al.  Adeno-associated virus-vectored gene therapy for retinal disease. , 2005, Human gene therapy.

[39]  Birgit Lorenz,et al.  Longitudinal and cross-sectional study of patients with early-onset severe retinal dystrophy associated with RPE65 mutations , 2005, Graefe's Archive for Clinical and Experimental Ophthalmology.

[40]  T. Aleman,et al.  Identifying photoreceptors in blind eyes caused by RPE65 mutations: Prerequisite for human gene therapy success , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[41]  Jian-xing Ma,et al.  Downregulation of cone-specific gene expression and degeneration of cone photoreceptors in the Rpe65-/- mouse at early ages. , 2005, Investigative ophthalmology & visual science.

[42]  R. V. Van Gelder,et al.  Lecithin-retinol Acyltransferase Is Essential for Accumulation of All-trans-Retinyl Esters in the Eye and in the Liver* , 2004, Journal of Biological Chemistry.

[43]  T. Aleman,et al.  In utero gene therapy rescues vision in a murine model of congenital blindness. , 2004, Molecular therapy : the journal of the American Society of Gene Therapy.

[44]  Jian-xing Ma,et al.  Isorhodopsin rather than rhodopsin mediates rod function in RPE65 knock-out mice , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[45]  G. Fain,et al.  Spontaneous activity of opsin apoprotein is a cause of Leber congenital amaurosis , 2003, Nature Genetics.

[46]  Edwin M Stone,et al.  Crumbs homolog 1 (CRB1) mutations result in a thick human retina with abnormal lamination. , 2003, Human molecular genetics.

[47]  T Michael Redmond,et al.  Acute radiolabeling of retinoids in eye tissues of normal and rpe65-deficient mice. , 2003, Investigative ophthalmology & visual science.

[48]  R. Crouch,et al.  Structure–function analysis of rods and cones in juvenile, adult, and aged C57BL/6 and Balb/c mice , 2003, Visual Neuroscience.

[49]  Jian-xing Ma,et al.  Retinyl esters are the substrate for isomerohydrolase. , 2003, Biochemistry.

[50]  Jian-xing Ma,et al.  Correlation of regenerable opsin with rod ERG signal in Rpe65-/- mice during development and aging. , 2002, Investigative ophthalmology & visual science.

[51]  Jian-xing Ma,et al.  11-cis-Retinal Reduces Constitutive Opsin Phosphorylation and Improves Quantum Catch in Retinoid-deficient Mouse Rod Photoreceptors* , 2002, The Journal of Biological Chemistry.

[52]  P. Gouras,et al.  Retinal degeneration and RPE transplantation in Rpe65(-/-) mice. , 2002, Investigative ophthalmology & visual science.

[53]  P. Detwiler,et al.  Recovery of Visual Functions in a Mouse Model of Leber Congenital Amaurosis* , 2002, The Journal of Biological Chemistry.

[54]  A. V. Cideciyan,et al.  Augmented rod bipolar cell function in partial receptor loss: an ERG study in P23H rhodopsin transgenic and aging normal rats , 2001, Vision Research.

[55]  N. Peachey,et al.  Age-Related Changes in the Mouse Outer Retina , 2001, Optometry and vision science : official publication of the American Academy of Optometry.

[56]  T. Lamb,et al.  The Gain of Rod Phototransduction Reconciliation of Biochemical and Electrophysiological Measurements , 2000, Neuron.

[57]  T. Aleman,et al.  Rapid restoration of visual pigment and function with oral retinoid in a mouse model of childhood blindness. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[58]  T. Aleman,et al.  Retinal Rod Photoreceptor–Specific Gene Mutation Perturbs Cone Pathway Development , 1999, Neuron.

[59]  E. Pugh,et al.  UV- and Midwave-Sensitive Cone-Driven Retinal Responses of the Mouse: A Possible Phenotype for Coexpression of Cone Photopigments , 1999, The Journal of Neuroscience.

[60]  D. Bok,et al.  Rpe65 is necessary for production of 11-cis-vitamin A in the retinal visual cycle , 1998, Nature Genetics.

[61]  A. Cideciyan,et al.  Relation of optical coherence tomography to microanatomy in normal and rd chickens. , 1998, Investigative ophthalmology & visual science.

[62]  R. Masland,et al.  The Major Cell Populations of the Mouse Retina , 1998, The Journal of Neuroscience.

[63]  L. Wachtmeister,et al.  Oscillatory potentials in the retina: what do they reveal , 1998, Progress in Retinal and Eye Research.

[64]  A. Cideciyan,et al.  An Alternative Phototransduction Model for Human Rod and Cone ERG a-waves: Normal Parameters and Variation with Age , 1996, Vision Research.

[65]  M. Naash,et al.  Rod phototransduction in transgenic mice expressing a mutant opsin gene. , 1996, Journal of the Optical Society of America. A, Optics, image science, and vision.

[66]  D. Hood,et al.  Rod phototransduction in retinitis pigmentosa: estimation and interpretation of parameters derived from the rod a-wave. , 1994, Investigative ophthalmology & visual science.

[67]  A. Cideciyan,et al.  Negative electroretinograms in retinitis pigmentosa. , 1993, Investigative ophthalmology & visual science.

[68]  T. Lamb,et al.  Amplification and kinetics of the activation steps in phototransduction. , 1993, Biochimica et biophysica acta.

[69]  D. Hood,et al.  A computational model of the amplitude and implicit time of the b-wave of the human ERG , 1992, Visual Neuroscience.

[70]  A. Hendrickson,et al.  Human photoreceptor topography , 1990, The Journal of comparative neurology.

[71]  M. Lavail,et al.  Rods and cones in the mouse retina. I. Structural analysis using light and electron microscopy , 1979, The Journal of comparative neurology.

[72]  A. J. Roman,et al.  Usher syndromes due to MYO 7 A , PCDH 15 , USH 2 A or GPR 98 mutations share retinal disease mechanism , 2008 .

[73]  A. Cideciyan In vivo assessment of photoreceptor function in human diseases caused by photoreceptor-specific gene mutations. , 2000, Methods in enzymology.