Constructed TiO2/NiO Core/Shell Nanorod Array for Efficient Electrochromic Application

A TiO2/NiO core/shell nanorod array film is prepared by the combination of hydrothermal and chemical-bath deposition. Compared to the NiO nanoflake film, the TiO2/NiO core/shell nanorod array exhibits better electrochromism with reversible color changes bewteen transparency and dark brown, shows larger optical modulation (83%), higher coloration efficiency (60.6 cm2 C1–) and better cycling performance. The enhancement of electrochromic performances is attributed to the synergetic contribution from the single crystalline TiO2 nanorod core and the ultrathin NiO nanoflake shell, as well as the ordered array geometry, which can all offer direct electrical pathways for electrons and increase the electron transport rate.

[1]  Guofa Cai,et al.  One-step fabrication of nanostructured NiO films from deep eutectic solvent with enhanced electrochromic performance , 2013 .

[2]  D. Sokaras,et al.  Origin of electrochromism in high-performing nanocomposite nickel oxide. , 2013, ACS applied materials & interfaces.

[3]  Jinmin Wang,et al.  Controlled synthesis of WO3 nanorods and their electrochromic properties in H2SO4 electrolyte , 2009 .

[4]  T. Brezesinski,et al.  Electrochromic Stability of WO3 Thin Films with Nanometer-Scale Periodicity and Varying Degrees of Crystallinity , 2007 .

[5]  Carlos B. Pinheiro,et al.  Inkjet printing of sol-gel synthesized hydrated tungsten oxide nanoparticles for flexible electrochromic devices. , 2012, ACS applied materials & interfaces.

[6]  Jun Zhang,et al.  An efficient route to a porous NiO/reduced graphene oxide hybrid film with highly improved electrochromic properties. , 2012, Nanoscale.

[7]  Jun Zhang,et al.  Cobalt Oxide Ordered Bowl-Like Array Films Prepared by Electrodeposition through Monolayer Polystyrene Sphere Template and Electrochromic Properties , 2010 .

[8]  Yichuan Ling,et al.  Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting. , 2011, Nano letters.

[9]  M. G. Cook,et al.  X-ray photoelectron studies on some oxides and hydroxides of cobalt, nickel, and copper , 1975 .

[10]  Arturo Mendoza-Galván,et al.  Electrochromism in nickel oxide-based thin films obtained by chemical bath deposition , 2008 .

[11]  F. Gan,et al.  Thermal, structural and optical properties of NiOx thin films deposited by reactive dc-magnetron sputtering , 2006 .

[12]  Gunnar A. Niklasson,et al.  Electrochromics for smart windows: thin films of tungsten oxide and nickel oxide, and devices based on these , 2007 .

[13]  A. V. Kadam,et al.  Structural, optical and electrochromic properties of nickel oxide thin films grown from electrodeposited nickel sulphide , 2007 .

[14]  J. Tu,et al.  Multicolor electrochromic polyaniline–WO3 hybrid thin films: One-pot molecular assembling synthesis , 2011 .

[15]  Jun Zhang,et al.  Electrochromic properties of porous NiO thin films prepared by a chemical bath deposition , 2008 .

[16]  Jean-Marie Tarascon,et al.  Improved cyclability by tungsten addition in electrochromic NiO thin films , 2006 .

[17]  Craig A. Grimes,et al.  Transparent Highly Ordered TiO2 Nanotube Arrays via Anodization of Titanium Thin Films , 2005 .

[18]  F. Ferreira,et al.  Reversible electronic charge transfer between au nanoparticles and electrochromic nio matrices upon electrochemical cycling , 2007 .

[19]  Yuan-dao Chen,et al.  Highly porous nickel oxide thin films prepared by a hydrothermal synthesis method for electrochromic application , 2013 .

[20]  Xiuli Wang,et al.  Hydrothermally synthesized WO3 nanowire arrays with highly improved electrochromic performance , 2011 .

[21]  Michael Grätzel,et al.  Materials science: Ultrafast colour displays , 2001, Nature.

[22]  Chaiwat Engtrakul,et al.  Hole doping in Al-containing nickel oxide materials to improve electrochromic performance. , 2013, ACS applied materials & interfaces.

[23]  M. Willander,et al.  Development of fast and sensitive ultraviolet photodetector using p‐type NiO/n‐type TiO2 heterostructures , 2013 .

[24]  C. Granqvist Oxide electrochromics: An introduction to devices and materials , 2012 .

[25]  Ullrich Steiner,et al.  Efficient electrochromic devices made from 3D nanotubular gyroid networks. , 2013, Nano letters.

[26]  Bin Liu,et al.  Growth of oriented single-crystalline rutile TiO(2) nanorods on transparent conducting substrates for dye-sensitized solar cells. , 2009, Journal of the American Chemical Society.

[27]  Ullrich Steiner,et al.  Enhanced Electrochromism in Gyroid‐Structured Vanadium Pentoxide , 2012, Advanced materials.

[28]  Chen Xu,et al.  Rectangular bunched rutile TiO2 nanorod arrays grown on carbon fiber for dye-sensitized solar cells. , 2012, Journal of the American Chemical Society.

[29]  Thomas S. Varley,et al.  Electrochromic and colorimetric properties of nickel(II) oxide thin films prepared by aerosol-assisted chemical vapor deposition. , 2013, ACS applied materials & interfaces.

[30]  Hua Zhang,et al.  Controllable growth of conducting polymers shell for constructing high-quality organic/inorganic core/shell nanostructures and their optical-electrochemical properties. , 2013, Nano letters.

[31]  Xuehong Lu,et al.  Hybrid Materials and Polymer Electrolytes for Electrochromic Device Applications , 2012, Advanced materials.

[32]  Gunnar A. Niklasson,et al.  Electrochromic Materials and Devices: : Brief Survey and New Data on Optical Absorption in Tungsten Oxide and Nickel Oxide Films , 2006 .

[33]  Jih-Jen Wu,et al.  Fuel-assisted solution route to nanostructured nickel oxide films for electrochromic device application. , 2013, ACS applied materials & interfaces.

[34]  X. Xia,et al.  Hydrothermal-synthesized mesoporous nickel oxide nanowall arrays with enhanced electrochromic application , 2013 .

[35]  Hongzhi Wang,et al.  Hierarchical NiO microflake films with high coloration efficiency, cyclic stability and low power consumption for applications in a complementary electrochromic device. , 2013, Nanoscale.

[36]  Guofa Cai,et al.  Ultra fast electrochromic switching of nanostructured NiO films electrodeposited from choline chloride-based ionic liquid , 2013 .

[37]  J. Tu,et al.  An all-solid-state electrochromic device based on NiO/WO3 complementary structure and solid hybrid polyelectrolyte , 2009 .

[38]  Carlos B. Pinheiro,et al.  Electrochromic properties of inkjet printed vanadium oxide gel on flexible polyethylene terephthalate/indium tin oxide electrodes. , 2012, ACS applied materials & interfaces.

[39]  S. Komornicki,et al.  Structural properties of TiO2–WO3 thin films prepared by r.f. sputtering , 2004 .

[40]  T. Maruyama,et al.  The electrochromic properties of nickel oxide thin films prepared by chemical vapor deposition , 1993 .

[41]  Jun Zhang,et al.  Morphology effect on the electrochromic and electrochemical performances of NiO thin films , 2008 .

[42]  Yanting Li,et al.  Preparation and characterization of WO3/TiO2 hollow microsphere composites with catalytic activity in dark , 2012 .

[43]  Guofa Cai,et al.  Hierarchical structure Ti-doped WO3 film with improved electrochromism in visible-infrared region , 2013 .

[44]  Daniel Mandler,et al.  High switching speed and coloration efficiency of titanium-doped vanadium oxide thin film electrochromic devices , 2013 .

[45]  J. Lian,et al.  Porous nickel oxide nano-sheets for high performance pseudocapacitance materials , 2011 .

[46]  Jin-Han Lin,et al.  Efficient electrochromic properties of high-density and large-area arrays of one-dimensional NiO nanorods , 2013 .

[47]  E. Fred Schubert,et al.  Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection , 2007 .

[48]  Guofa Cai,et al.  Multicolor Electrochromic Film Based on TiO2@Polyaniline Core/Shell Nanorod Array , 2013 .

[49]  J. Bernède,et al.  Properties of NiO thin films deposited by intermittent spray pyrolysis process , 2007 .

[50]  Wen-Yin Ko,et al.  Hydrothermally processed TiO2 nanowire electrodes with antireflective and electrochromic properties. , 2012, ACS nano.

[51]  Kourosh Kalantar-Zadeh,et al.  Electrochromic properties of TiO2 nanotubes coated with electrodeposited MoO3. , 2013, Nanoscale.

[52]  C. Grimes,et al.  Vertically aligned single crystal TiO2 nanowire arrays grown directly on transparent conducting oxide coated glass: synthesis details and applications. , 2008, Nano letters.