Statistical sensitivity analysis of packed column reactors for contaminated wastewater

In this article we consider the statistical sensitivity analysis of heavy metal biosorption in contaminated wastewater packed column reactors. In particular, the model describes the biosorption phenomenon using the Advection Dispersion Reaction equation under rapid local equilibrium. This allows computer simulation with random input parameters chosen from appropriate probability distributions. In order to have a statistical framework for analyzing the simulated data and assessing input importance, we introduce heteroskedastic and multivariate sensitivity analysis, which extends standard sensitivity analysis. Copyright © 2003 John Wiley & Sons, Ltd.

[1]  Anja Vogler,et al.  An Introduction to Multivariate Statistical Analysis , 2004 .

[2]  F. Pagnanelli,et al.  Multi-metallic modelling for biosorption of binary systems. , 2002, Water research.

[3]  F. Pagnanelli,et al.  pH-related equilibria models for biosorption in single metal systems , 2002 .

[4]  T. Kutsal,et al.  Evaluation, interpretation, and representation of three-metal biosorption equilibria using a fungal biosorbent , 2001 .

[5]  Modeling of copper biosorption by Arthrobacter sp. in a UF/MF membrane reactor. , 2001, Environmental science & technology.

[6]  Y. Sağ,et al.  Application of equilibrium and mass transfer models to dynamic removal of Cr(VI) ions by Chitin in packed column reactor , 2001 .

[7]  F. Pagnanelli,et al.  Biosorption of heavy metals by Sphaerotilus natans: an equilibrium study at different pH and biomass concentrations , 2001 .

[8]  F. Mavituna,et al.  Application of simplified rapid equilibrium models in simulating experimental breakthrough curves from fixed bed biosorption reactors , 2001 .

[9]  B. Volesky Detoxification of metal-bearing effluents: biosorption for the next century , 2001 .

[10]  Y. Sağ,et al.  Mass transfer and equilibrium studies for the sorption of chromium ions onto chitin , 2000 .

[11]  B. Volesky,et al.  Multicomponent biosorption in fixed beds , 2000 .

[12]  F. Pagnanelli,et al.  Biosorption of Metal Ions on Arthrobacter sp.: Biomass Characterization and Biosorption Modeling , 2000 .

[13]  T. Kutsal,et al.  Equilibrium parameters for the single- and multicomponent biosorption of Cr(VI) and Fe(III) ions on R. arrhizus in a packed column , 2000 .

[14]  M. Tsezos,et al.  Modelling of fixed bed biosorption columns in continuous metal ion removal processes. The case of single solute local equilibrium , 1999 .

[15]  B. Volesky,et al.  Advances in the biosorption of heavy metals , 1998 .

[16]  F. Beolchini,et al.  Kinetic Modeling of Copper Biosorption by Immobilized Biomass , 1998 .

[17]  G. Demopoulos,et al.  OPTIMIZING Cu REMOVAL/RECOVERY IN A BIOSORPTION COLUMN , 1997 .

[18]  S. Lora,et al.  Polyhydroxoethylmethacrylate (polyHEMA) -trimethylolpropanetrimethacrylate ( (TMPTM) as a support for metal biosorption with Arthrobacter sp. , 1997 .

[19]  F. Beolchini,et al.  Removal of metals by biosorption: a review , 1997 .

[20]  F. Beolchini,et al.  BIOSORPTION OF TOXIC METALS : AN EQUILIBRIUM STUDY USING FREE CELLS OF ARTHROBACTER SP. , 1997 .

[21]  A. C. Rencher Methods of multivariate analysis , 1995 .

[22]  Richard F. Sincovec,et al.  Algorithm 540: PDECOL, General Collocation Software for Partial Differential Equations [D3] , 1979, TOMS.

[23]  T. W. Anderson An Introduction to Multivariate Statistical Analysis , 1959 .