Crystal structure of Clostridium difficile toxin A

[1]  H. Moon The ABCD Model , 2016 .

[2]  H. Feng,et al.  Masking autoprocessing of Clostridium difficile toxin A by the C-terminus combined repetitive oligo peptides. , 2015, Biochemical and biophysical research communications.

[3]  J. Meek,et al.  Burden of Clostridium difficile infection in the United States. , 2015, The New England journal of medicine.

[4]  M. Mueller,et al.  The Combined Repetitive Oligopeptides of Clostridium difficile Toxin A Counteract Premature Cleavage of the Glucosyl-Transferase Domain by Stabilizing Protein Conformation , 2014, Toxins.

[5]  A. Therien,et al.  Mechanism of Action and Epitopes of Clostridium difficile Toxin B-neutralizing Antibody Bezlotoxumab Revealed by X-ray Crystallography , 2014, The Journal of Biological Chemistry.

[6]  D. Lacy,et al.  Translocation domain mutations affecting cellular toxicity identify the Clostridium difficile toxin B pore , 2014, Proceedings of the National Academy of Sciences.

[7]  J. Tanha,et al.  Structural Basis for Antibody Recognition in the Receptor-binding Domains of Toxins A and B from Clostridium difficile* , 2013, The Journal of Biological Chemistry.

[8]  Melissa A. Farrow,et al.  Clostridium difficile Toxin B Causes Epithelial Cell Necrosis through an Autoprocessing-Independent Mechanism , 2012, PLoS pathogens.

[9]  Kevin W Eliceiri,et al.  NIH Image to ImageJ: 25 years of image analysis , 2012, Nature Methods.

[10]  R. Benz,et al.  Structural determinants for membrane insertion, pore formation and translocation of Clostridium difficile toxin B , 2012 .

[11]  M. A. Farrow,et al.  Structural Determinants of Clostridium difficile Toxin A Glucosyltransferase Activity* , 2012, The Journal of Biological Chemistry.

[12]  R. Benz,et al.  Structural determinants for membrane insertion, pore formation and translocation of Clostridium difficile toxin B , 2011, Molecular microbiology.

[13]  I. Just,et al.  Autoproteolytic cleavage mediates cytotoxicity of Clostridium difficile toxin A , 2011, Naunyn-Schmiedeberg's Archives of Pharmacology.

[14]  K. Garcia,et al.  Defining an allosteric circuit in the cysteine protease domain of Clostridium difficile toxins , 2010, Nature Structural &Molecular Biology.

[15]  K. Garcia,et al.  Rational design of inhibitors and activity-based probes targeting Clostridium difficile virulence factor TcdB. , 2010, Chemistry & biology.

[16]  D. Lacy,et al.  Structural organization of the functional domains of Clostridium difficile toxins A and B , 2010, Proceedings of the National Academy of Sciences.

[17]  N. Fairweather,et al.  Four distinct structural domains in Clostridium difficile toxin B visualized using SAXS. , 2010, Journal of molecular biology.

[18]  Roger Baxter,et al.  Treatment with monoclonal antibodies against Clostridium difficile toxins. , 2010, The New England journal of medicine.

[19]  E. London,et al.  The membrane topography of the diphtheria toxin T domain linked to the a chain reveals a transient transmembrane hairpin and potential translocation mechanisms. , 2009, Biochemistry.

[20]  D. Lacy,et al.  Structure-Function Analysis of Inositol Hexakisphosphate-induced Autoprocessing in Clostridium difficile Toxin A* , 2009, The Journal of Biological Chemistry.

[21]  C. Kelly,et al.  Clostridium difficile--more difficult than ever. , 2008, The New England journal of medicine.

[22]  K. Aktories,et al.  Structure and mode of action of clostridial glucosylating toxins: the ABCD model. , 2008, Trends in microbiology.

[23]  K. Aktories,et al.  Clostridium difficile Glucosyltransferase Toxin B-essential Amino Acids for Substrate Binding* , 2007, Journal of Biological Chemistry.

[24]  Klaus Aktories,et al.  Auto-catalytic Cleavage of Clostridium difficile Toxins A and B Depends on Cysteine Protease Activity* , 2007, Journal of Biological Chemistry.

[25]  S. Tenzer,et al.  Autocatalytic cleavage of Clostridium difficile toxin B , 2007, Nature.

[26]  I. Just,et al.  Application of Mutated Clostridium difficile Toxin A for Determination of Glucosyltransferase-Dependent Effects , 2006, Infection and Immunity.

[27]  K. Ng,et al.  Crystal structure of receptor-binding C-terminal repeats from Clostridium difficile toxin A. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[28]  M Newville,et al.  ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. , 2005, Journal of synchrotron radiation.

[29]  J. Ballard,et al.  Clostridium difficile Toxins: Mechanism of Action and Role in Disease , 2005, Clinical Microbiology Reviews.

[30]  P. Emsley,et al.  High-resolution structure of a retroviral protease folded as a monomer , 2011, Acta Crystallographica Section D: Biological Crystallography.

[31]  Conrad C. Huang,et al.  UCSF Chimera—A visualization system for exploratory research and analysis , 2004, J. Comput. Chem..

[32]  G Bricogne,et al.  Generation, representation and flow of phase information in structure determination: recent developments in and around SHARP 2.0. , 2003, Acta crystallographica. Section D, Biological crystallography.

[33]  Klaus Aktories,et al.  The complete receptor-binding domain of Clostridium difficile toxin A is required for endocytosis. , 2003, Biochemical and biophysical research communications.

[34]  Randy J Read,et al.  Electronic Reprint Biological Crystallography Phenix: Building New Software for Automated Crystallographic Structure Determination Biological Crystallography Phenix: Building New Software for Automated Crystallographic Structure Determination , 2022 .

[35]  R. Benz,et al.  Low pH-induced Formation of Ion Channels by Clostridium difficile Toxin B in Target Cells* , 2001, The Journal of Biological Chemistry.

[36]  J. Ballard,et al.  pH-Induced Conformational Changes inClostridium difficile Toxin B , 2000, Infection and Immunity.

[37]  C. von Eichel-Streiber,et al.  The C-terminal ligand-binding domain of Clostridium difficile toxin A (TcdA) abrogates TcdA-specific binding to cells and prevents mouse lethality. , 1997, FEMS microbiology letters.

[38]  M. Wilm,et al.  The Enterotoxin from Clostridium difficile (ToxA) Monoglucosylates the Rho Proteins(*) , 1995, The Journal of Biological Chemistry.

[39]  M. Mann,et al.  Glucosylation of Rho proteins by Clostridium difficile toxin B , 1995, Nature.

[40]  T. Wilkins,et al.  Localization of two epitopes recognized by monoclonal antibody PCG-4 on Clostridium difficile toxin A , 1992, Infection and immunity.

[41]  Katherine A. Kantardjieff,et al.  The crystal structure of diphtheria toxin , 1992, Nature.

[42]  M. Sauerborn,et al.  Comparative sequence analysis of theClostridium difficile toxins A and B , 1992, Molecular and General Genetics MGG.

[43]  T. Wilkins,et al.  Clostridium difficile: its disease and toxins , 1988, Clinical Microbiology Reviews.

[44]  I. Florin,et al.  Lysosomal involvement in cellular intoxication with Clostridium difficile toxin B. , 1986, Microbial pathogenesis.

[45]  H. Urlaub,et al.  Characterization of the cleavage site and function of resulting cleavage fragments after limited proteolysis of Clostridium difficile toxin B (TcdB) by host cells. , 2005, Microbiology.

[46]  Z. Otwinowski,et al.  [20] Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.