Robustness of controllability and observability of linear time-varying systems with application to the emergency control of power systems

Fixed point methods from nonlinear anaysis are used to establish conditions under which the uniform complete controllability of linear time-varying systems is preserved under non-linear perturbations in the state dynamics and the zero-input uniform complete observability of linear time-varying systems is preserved under non-linear perturbation in the state dynamics and output read out map. Algorithms for computing the specific input to steer the perturbed systems from a given initial state to a given final state are also presented. As an application, a very specific emergency control of an interconnected power system is formulated as a steering problem and it is shown that this emergency control is indeed possible in finite time.