Common Genetic Variation in Circadian Rhythm Genes and Risk of Epithelial Ovarian Cancer (EOC)

Disruption in circadian gene expression, whether due to genetic variation or environmental factors (e.g., light at night, shiftwork), is associated with increased incidence of breast, prostate, gastrointestinal and hematologic cancers and gliomas. Circadian genes are highly expressed in the ovaries where they regulate ovulation; circadian disruption is associated with several ovarian cancer risk factors (e.g., endometriosis). However, no studies have examined variation in germline circadian genes as predictors of ovarian cancer risk and invasiveness. The goal of the current study was to examine single nucleotide polymorphisms (SNPs) in circadian genes BMAL1, CRY2, CSNK1E, NPAS2, PER3, REV1 and TIMELESS and downstream transcription factors KLF10 and SENP3 as predictors of risk of epithelial ovarian cancer (EOC) and histopathologic subtypes. The study included a test set of 3,761 EOC cases and 2,722 controls and a validation set of 44,308 samples including 18,174 (10,316 serous) cases and 26,134 controls from 43 studies participating in the Ovarian Cancer Association Consortium (OCAC). Analysis of genotype data from 36 genotyped SNPs and 4600 imputed SNPs indicated that the most significant association was rs117104877 in BMAL1 (OR = 0.79, 95% CI = 0.68–0.90, p = 5.59 × 10−4]. Functional analysis revealed a significant down regulation of BMAL1 expression following cMYC overexpression and increasing transformation in ovarian surface epithelial (OSE) cells as well as alternative splicing of BMAL1 exons in ovarian and granulosa cells. These results suggest that variation in circadian genes, and specifically BMAL1, may be associated with risk of ovarian cancer, likely through disruption of hormonal pathways.

Dong Liang | Brooke L. Fridley | Jennifer A. Doherty | Matthias W. Beckmann | Peter A. Fasching | Hannah Yang | Graham G. Giles | Thilo Dörk | Natalia Bogdanova | Soo-Hwang Teo | Douglas F. Easton | Shan Wang-Gohrke | Arif B. Ekici | Angela Brooks-Wilson | Francesmary Modugno | Karen Lu | Yurii B. Shvetsov | Keitaro Matsuo | James Paul | Honglin Song | Susan J. Ramus | Alice S. Whittemore | Simon A. Gayther | Ignace Vergote | Joe Dennis | Lara E Sucheston-Campbell | Ganna Chornokur | Catherine M. Phelan | Florian Heitz | Heli Nevanlinna | Argyrios Ziogas | Jolanta Lissowska | Anja Rudolph | Hoda Anton-Culver | Wei Zheng | Anna Jakubowska | Jan Lubinski | Jenny Chang-Claude | Diether Lambrechts | Melissa C. Southey | Malcolm C. Pike | Roger L. Milne | Alexander Hein | Nicolas Wentzensen | Douglas A. Levine | Edwin S. Iversen | Kate Lawrenson | Philipp Harter | Peter Hillemanns | Weiva Sieh | Thomas A. Sellers | Jenny Lester | Nhu D. Le | Irene Orlow | Ian G. Campbell | Paul D. P. Pharoah | Usha Menon | Aleksandra Gentry-Maharaj | Kunle Odunsi | Barry Rosen | Roberta B. Ness | Linda E. Kelemen | Hui-Yi Lin | Alvaro N.A. Monteiro | Valerie McGuire | Lynne R. Wilkens | Jonathan P. Tyrer | Xifeng Wu | Ellen L. Goode | Nadeem Siddiqui | Cezary Cybulski | Joseph H. Rothstein | Lara E. Sucheston-Campbell | Fiona Bruinsma | Camilla Krakstad | A. Whittemore | L. Kiemeney | M. Pike | M. Beckmann | P. Fasching | R. Vierkant | T. Sellers | A. Hein | J. Chang-Claude | B. Fridley | E. Goode | B. Karlan | N. Le | A. Berchuck | E. Iversen | G. Giles | T. Dörk | M. Southey | D. Easton | Xifeng Wu | P. Pharoah | D. Lambrechts | A. Brooks-Wilson | D. Levine | L. Wilkens | P. Hillemanns | X. Shu | W. Zheng | A. Ziogas | H. Anton-Culver | R. Glasspool | U. Menon | A. Gentry-Maharaj | K. Aben | D. Eccles | L. Brinton | J. Lissowska | H. Nevanlinna | N. Bogdanova | R. Milne | S. Orsulic | J. Cunningham | M. Goodman | S. Kjaer | J. Dennis | A. Rudolph | A. Ekici | A. Jakubowska | J. Lubiński | N. Antonenkova | K. Matsuo | A. Wu | S. Teo | J. Tyrer | U. Eilber | S. Wang-gohrke | C. Bunker | A. Monteiro | S. Gayther | D. Cramer | N. Wentzensen | H. Jim | B. Rosen | I. Vergote | R. Ness | Hui-Yi Lin | E. Amankwah | S. Olson | H. Risch | L. Kelemen | S. Narod | K. Odunsi | I. Campbell | I. Runnebaum | I. Orlow | J. Doherty | J. Schildkraut | K. Moysich | F. Modugno | B. Ji | G. Chornokur | E. Schernhammer | K. Lu | M. Bisogna | J. McLaughlin | H. Salvesen | L. Massuger | Y. Woo | A. V. van Altena | E. Bandera | M. Hildebrandt | C. Pearce | F. Heitz | P. Harter | A. du Bois | R. Butzow | K. Lawrenson | Hannah P. Yang | J. Lester | C. Cybulski | V. McGuire | J. Rothstein | W. Sieh | C. Walsh | M. Rossing | Zhihua Chen | Honglin Song | C. Phelan | A. Jensen | L. Cook | J. Gronwald | N. Siddiqui | S. Tworoger | R. Edwards | E. Høgdall | C. Høgdall | S. Ramus | L. Bjørge | C. Krakstad | J. Permuth-Wey | J. Paul | I. Rzepecka | A. Dansonka-Mieszkowska | J. Kupryjańczyk | L. Thomsen | E. Despierre | L. Pelttari | K. Wicklund | P. Thompson | Ann Chen | F. Bruinsma | Yukie T. Bean | K. Carty | M. Dürst | S. Hosono | S. Lambrechts | Alice W. Lee | S. Lele | A. Leminen | Dong Liang | B. Lim | L. Lundvall | E. Poole | I. Schwaab | Y. Shvetsov | B. Śpiewankiewicz | K. Terry | I. L. Tangen | H. Hasmad | Rachel Palmieri Weber | Melissa Kellar | I. McNeish | Andrew Berchuck | Beth Y. Karlan | Sara H. Olson | Xiao-Ou Shu | Arto Leminen | Steven A. Narod | Helga B. Salvesen | Yu-Tang Gao | Tanja Pejovic | Louise A. Brinton | Anna H. Wu | Sandra Orsulic | Eva Schernhammer | Elisa V. Bandera | Andreas du Bois | Estrid Hogdall | Jacek Gronwald | Agnieszka Dansonka-Mieszkowska | Jolanta Kupryjanczyk | Mary Anne Rossing | Ralf Butzow | Satoyo Hosono | Liisa M. Pelttari | Diana M. Eccles | Joellen M. Schildkraut | Robert A. Vierkant | Julie M. Cunningham | Heather S.L. Jim | Zhihua Chen | Ann Y. Chen | Jennifer Permuth-Wey | Katja KH. Aben | Natalia Antonenkova | Maria Bisogna | Line Bjorge | Clareann H. Bunker | Karen Carty | Linda S. Cook | Daniel W. Cramer | Evelyn Despierre | Matthias Dürst | Robert P. Edwards | Rosalind Glasspool | Marc T. Goodman | Hanis N. Hasmad | Michelle A.T. Hildebrandt | Claus K. Hogdall | Allan Jensen | Bu-Tian Ji | Melissa Kellar | Lambertus A. Kiemeney | Susanne K. Kjaer | Sandrina Lambrechts | Shashi Lele | Boon Kiong Lim | Lene Lundvall | Leon F.A.G. Massuger | John R. McLaughlin | Ian McNeish | Lotte Thomsen | Kirsten B. Moysich | Ursula Eilber | Rachel Palmieri Weber | Celeste L. Pearce | Elizabeth M. Poole | Harvey A. Risch | Ingo B. Runnebaum | Iwona K. Rzepecka | Ira Schwaab | Beata Spiewankiewicz | Lara Sucheston-Campbell | Kathryn L. Terry | Pamela J. Thompson | Ingvild L. Tangen | Shelley S. Tworoger | Anne M. van Altena | Christine S. Walsh | Kristine G. Wicklund | Yin-Ling Woo | Ernest Amankwah | Yu-Tang Gao | T. Pejovic | K. Lu | A. Monteiro | Jennifer Permuth‐Wey | Yu-Tang Gao | Maria Bisogna | K. Lu

[1]  A. Arıcı,et al.  Endometriosis related to family history of malignancies in the Yale series. , 2010, Surgical oncology.

[2]  D. Kennaway,et al.  Circadian regulation of reproduction: from gamete to offspring. , 2013, Progress in biophysics and molecular biology.

[3]  P. V. van Diest,et al.  Ovarian carcinogenesis, an alternative theory. , 2007, Gynecologic oncology.

[4]  R. Urrutia,et al.  Molecular Cloning and Characterization of TIEG2Reveals a New Subfamily of Transforming Growth Factor-β-inducible Sp1-like Zinc Finger-encoding Genes Involved in the Regulation of Cell Growth* , 1998, The Journal of Biological Chemistry.

[5]  Franck Delaunay,et al.  Krüppel-Like Factor KLF10 Is a Link between the Circadian Clock and Metabolism in Liver , 2010, Molecular and Cellular Biology.

[6]  Kurt Straif,et al.  Carcinogenicity of shift-work, painting, and fire-fighting. , 2007, The Lancet. Oncology.

[7]  T. Holford,et al.  Non-synonymous polymorphisms in the circadian gene NPAS2 and breast cancer risk , 2008, Breast Cancer Research and Treatment.

[8]  R. Stevens,et al.  Genetic and epigenetic associations of circadian gene TIMELESS and breast cancer risk , 2012, Molecular carcinogenesis.

[9]  D. Tindall,et al.  Expression of early growth response genes in human prostate cancer. , 1998, Cancer research.

[10]  W. Jin,et al.  TIEG1 induces apoptosis through mitochondrial apoptotic pathway and promotes apoptosis induced by homoharringtonine and velcade , 2007, FEBS letters.

[11]  A. Seidler,et al.  Night-shift work and breast cancer--a systematic review and meta-analysis. , 2013, Scandinavian journal of work, environment & health.

[12]  Herbert Yu,et al.  The circadian gene NPAS2 is a novel prognostic biomarker for breast cancer , 2010, Breast Cancer Research and Treatment.

[13]  P. Bhatti,et al.  Nightshift work and risk of ovarian cancer , 2013, Occupational and Environmental Medicine.

[14]  Circadian pathway genes in relation to glioma risk and outcome , 2013, Cancer Causes & Control.

[15]  N. Yaegashi,et al.  Clinicopathological significance of circadian rhythm‐related gene expression levels in patients with epithelial ovarian cancer , 2008, Acta obstetricia et gynecologica Scandinavica.

[16]  A. Vaiopoulou,et al.  Association of the clock genes polymorphisms with colorectal cancer susceptibility , 2013, Journal of surgical oncology.

[17]  Violetta Pilorz,et al.  Low reproductive success in Per1 and Per2 mutant mouse females due to accelerated ageing? , 2008, Reproduction.

[18]  G. Gores,et al.  Overexpression of the TGFbeta-regulated zinc finger encoding gene, TIEG, induces apoptosis in pancreatic epithelial cells. , 1997, The Journal of clinical investigation.

[19]  G. Gores,et al.  The transforming growth factor β1–inducible transcription factor, TIEG1, mediates apoptosis through oxidative stress , 1999, Hepatology.

[20]  D. Ghosh,et al.  Genome-wide expressions in autologous eutopic and ectopic endometrium of fertile women with endometriosis , 2012, Reproductive Biology and Endocrinology.

[21]  Wei Zhang,et al.  The role of polymorphisms in circadian pathway genes in breast tumorigenesis , 2011, Breast Cancer Research and Treatment.

[22]  J. Lönnqvist,et al.  ARNTL (BMAL1) and NPAS2 Gene Variants Contribute to Fertility and Seasonality , 2010, PloS one.

[23]  R. Janknecht,et al.  TGFβ inducible early gene enhances TGFβ/Smad-dependent transcriptional responses , 2002, Oncogene.

[24]  C. Chinopoulos,et al.  TGF beta 1 kills lymphoma cells using mitochondrial apoptotic pathway with the help of caspase-8. , 2002, Anticancer research.

[25]  T. Holford,et al.  Clock-cancer connection in non-Hodgkin's lymphoma: a genetic association study and pathway analysis of the circadian gene cryptochrome 2. , 2009, Cancer research.

[26]  C. Holman,et al.  In vitro fertilization, endometriosis, nulliparity and ovarian cancer risk. , 2013, Gynecologic oncology.

[27]  P. Boyle,et al.  Ala394Thr polymorphism in the clock gene NPAS2: A circadian modifier for the risk of non‐Hodgkin's lymphoma , 2007, International journal of cancer.

[28]  Brooke L. Fridley,et al.  GWAS meta-analysis and replication identifies three new susceptibility loci for ovarian cancer , 2013, Nature Genetics.

[29]  L. Brinton,et al.  Causes of Infertility as Predictors of Subsequent Cancer Risk , 2005, Epidemiology.

[30]  A. Sehgal,et al.  Speed control: cogs and gears that drive the circadian clock , 2012, Trends in Neurosciences.

[31]  K. Waters,et al.  Overexpression of a Nuclear Protein, TIEG, Mimics Transforming Growth Factor-β Action in Human Osteoblast Cells* , 2000, The Journal of Biological Chemistry.

[32]  Kathleen M. Fairfield,et al.  Association of oral contraceptive use, other contraceptive methods, and infertility with ovarian cancer risk. , 2007, American journal of epidemiology.

[33]  A. Braun,et al.  Gene expression profiling of metastatic brain cancer. , 2007, Oncology reports.

[34]  Yihai Cao,et al.  Opposing effects of circadian clock genes bmal1 and period2 in regulation of VEGF-dependent angiogenesis in developing zebrafish. , 2012, Cell reports.

[35]  William J Schwartz,et al.  Minireview: timely ovulation: circadian regulation of the female hypothalamo-pituitary-gonadal axis. , 2006, Endocrinology.

[36]  P. Donnelly,et al.  A Flexible and Accurate Genotype Imputation Method for the Next Generation of Genome-Wide Association Studies , 2009, PLoS genetics.

[37]  J. Ingle,et al.  Differential Gene Expression of TGFβ Inducible Early Gene (TIEG), Smad7, Smad2 and Bard1 in Normal and Malignant Breast Tissue , 2004, Breast Cancer Research and Treatment.

[38]  T. Åkerstedt,et al.  Breast cancer among shift workers: results of the WOLF longitudinal cohort study. , 2013, Scandinavian journal of work, environment & health.

[39]  Theodore Holford,et al.  The Core Circadian Gene Cryptochrome 2 Influences Breast Cancer Risk, Possibly by Mediating Hormone Signaling , 2010, Cancer Prevention Research.

[40]  L. Titus,et al.  Reproductive characteristics in relation to ovarian cancer risk by histologic pathways. , 2013, Human reproduction.

[41]  A. Sehgal,et al.  The Circadian Clock Protein BMAL1 Is Necessary for Fertility and Proper Testosterone Production in Mice , 2008, Journal of biological rhythms.

[42]  A. Myers,et al.  A common polymorphism near PER1 and the timing of human behavioral rhythms , 2012, Annals of neurology.

[43]  K. Yu,et al.  Variants in circadian genes and prostate cancer risk: a population-based study in China , 2007, Prostate Cancer and Prostatic Diseases.

[44]  John D. Storey A direct approach to false discovery rates , 2002 .

[45]  Ilmin Kwon,et al.  Mammalian Molecular Clocks , 2011, Experimental neurobiology.

[46]  B. Frenkel,et al.  Gene expression profiling of glucocorticoid-inhibited osteoblasts. , 2004, Journal of molecular endocrinology.

[47]  J. Xing,et al.  A functional polymorphism in PER3 gene is associated with prognosis in hepatocellular carcinoma , 2012, Liver international : official journal of the International Association for the Study of the Liver.

[48]  R. Bernards,et al.  A Large Scale shRNA Barcode Screen Identifies the Circadian Clock Component ARNTL as Putative Regulator of the p53 Tumor Suppressor Pathway , 2009, PloS one.

[49]  B. Kamdar,et al.  Night-shift work and risk of breast cancer: a systematic review and meta-analysis , 2013, Breast Cancer Research and Treatment.

[50]  J. Marchini,et al.  Fast and accurate genotype imputation in genome-wide association studies through pre-phasing , 2012, Nature Genetics.

[51]  R. Young,et al.  Super-Enhancers in the Control of Cell Identity and Disease , 2013, Cell.

[52]  L. Xian,et al.  Effects of the biological clock gene Bmal1 on tumour growth and anti-cancer drug activity. , 2010, Journal of biochemistry.

[53]  B. H. Miller,et al.  Circadian Clock Mutation Disrupts Estrous Cyclicity and Maintenance of Pregnancy , 2004, Current Biology.

[54]  Jennifer R. Rider,et al.  Circadian clock genes and risk of fatal prostate cancer , 2014, Cancer Causes & Control.

[55]  E. Schernhammer,et al.  Rotating Night Shift Work and Risk of Ovarian Cancer , 2011, Cancer Epidemiology, Biomarkers & Prevention.

[56]  C. Nievergelt,et al.  Common genetic variants in ARNTL and NPAS2 and at chromosome 12p13 are associated with objectively measured sleep traits in the elderly. , 2013, Sleep.

[57]  J. Mill,et al.  Sleep quality and diurnal preference in a sample of young adults: Associations with 5HTTLPR, PER3, and CLOCK 3111 , 2011, American journal of medical genetics. Part B, Neuropsychiatric genetics : the official publication of the International Society of Psychiatric Genetics.

[58]  K. Yeung,et al.  A meta-analysis on dose-response relationship between night shift work and the risk of breast cancer. , 2013, Annals of oncology : official journal of the European Society for Medical Oncology.

[59]  J. Stanford,et al.  Testing the circadian gene hypothesis in prostate cancer: a population-based case-control study. , 2009, Cancer research.

[60]  R. Janknecht,et al.  TGFbeta inducible early gene enhances TGFbeta/Smad-dependent transcriptional responses. , 2002, Oncogene.

[61]  E. Ballestar,et al.  Epigenetic inactivation of the circadian clock gene BMAL1 in hematologic malignancies. , 2009, Cancer research.

[62]  R. Goldbohm,et al.  Reproductive and Hormonal Factors in Association With Ovarian Cancer in the Netherlands Cohort Study , 2010, American journal of epidemiology.

[63]  M. Greene Circadian rhythms and tumor growth. , 2012, Cancer letters.

[64]  M. Lerman,et al.  Two novel VHL targets, TGFBI (BIGH3) and its transactivator KLF10, are up-regulated in renal clear cell carcinoma and other tumors. , 2008, Biochemical and biophysical research communications.

[65]  S. Khosla,et al.  Effects of gonadal and adrenal androgens in a novel androgen‐responsive human osteoblastic cell line , 1998, Journal of cellular biochemistry.

[66]  I. Jacobs,et al.  Modelling genetic and clinical heterogeneity in epithelial ovarian cancers. , 2011, Carcinogenesis.

[67]  F. Coppedè,et al.  Clock T3111C and Per2 C111G SNPs do not influence circadian rhythmicity in healthy Italian population , 2011, Neurological Sciences.

[68]  P. Guénel,et al.  Breast cancer risk, nightwork, and circadian clock gene polymorphisms. , 2014, Endocrine-related cancer.

[69]  L. Pismen,et al.  Multiscale modeling of tumor growth induced by circadian rhythm disruption in epithelial tissue , 2015, Journal of biological physics.

[70]  Fiona C Baker,et al.  Circadian rhythms, sleep, and the menstrual cycle. , 2007, Sleep medicine.

[71]  R. Urrutia,et al.  TIEG proteins join the Smads as TGF-beta-regulated transcription factors that control pancreatic cell growth. , 2000, American journal of physiology. Gastrointestinal and liver physiology.

[72]  B. Riggs,et al.  Tissue, cell type, and breast cancer stage‐specific expression of a TGF‐β inducible early transcription factor gene , 1998, Journal of cellular biochemistry.

[73]  Johnni Hansen,et al.  Nested case–control study of night shift work and breast cancer risk among women in the Danish military , 2012, Occupational and Environmental Medicine.