A Distributed Scalable Approach to Formation Control in Multi-robot Systems

A new algorithm for the control of formations of mobile robots is presented. Formations with a triangular lattice structure are created using distributed control rules, using only local information on each robot. The overall direction of movement of the formation is not pre-established but rather results from local interactions, giving all the robots a common, self-organized heading. Experiments were done to test the algorithm, yielding results in which robots behaved as expected, moving at a reasonable speed and maintaining the desired distances among themselves. Up to seven robots were used in real experiments and up to forty in simulation.

[1]  W ReynoldsCraig Flocks, herds and schools: A distributed behavioral model , 1987 .

[2]  Olivier Michel,et al.  Cyberbotics Ltd. Webots™: Professional Mobile Robot Simulation , 2004, ArXiv.

[3]  Suranga Hettiarachchi,et al.  An Overview of Physicomimetics , 2004, Swarm Robotics.

[4]  William M. Spears,et al.  Distributed, Physics-Based Control of Swarms of Vehicles , 2004 .

[5]  Tucker R. Balch,et al.  Behavior-based formation control for multirobot teams , 1998, IEEE Trans. Robotics Autom..

[6]  Alan Liu,et al.  Multiagent-Based Multi-team Formation Control for Mobile Robots , 2005, J. Intell. Robotic Syst..

[7]  Olivier Michel,et al.  Cyberbotics Ltd. Webots™: Professional Mobile Robot Simulation , 2004 .

[8]  Camillo J. Taylor,et al.  A vision-based formation control framework , 2002, IEEE Trans. Robotics Autom..

[9]  Andrew Howard,et al.  Multi-robot mapping using manifold representations , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[10]  Erol Sahin,et al.  Swarm Robotics: From Sources of Inspiration to Domains of Application , 2004, Swarm Robotics.

[11]  George J. Pappas,et al.  Stable flocking of mobile agents, part I: fixed topology , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[12]  Ronald C. Arkin,et al.  Motor Schema — Based Mobile Robot Navigation , 1989, Int. J. Robotics Res..

[13]  P. Kostelnik,et al.  Scalable multi-robot formations using local sensing and communication , 2002, Proceedings of the Third International Workshop on Robot Motion and Control, 2002. RoMoCo '02..

[14]  Tucker R. Balch,et al.  Social potentials for scalable multi-robot formations , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[15]  Maja J. Mataric,et al.  A general algorithm for robot formations using local sensing and minimal communication , 2002, IEEE Trans. Robotics Autom..

[16]  Rodney M. Goodman,et al.  Distributed odor source localization , 2002 .

[17]  Satoshi Murata,et al.  Self-organizing formation algorithm for active elements , 2002, 21st IEEE Symposium on Reliable Distributed Systems, 2002. Proceedings..

[18]  G. Sukhatme,et al.  Negotiated Formations , 2003 .

[19]  Alcherio Martinoli,et al.  Inspiring and Modeling Multi-Robot Search with Particle Swarm Optimization , 2007, 2007 IEEE Swarm Intelligence Symposium.

[20]  Libor Preucil,et al.  European Robotics Symposium 2008 , 2008 .

[21]  Eric Martinson,et al.  Lattice Formation in Mobile Autonomous Sensor Arrays , 2004, Swarm Robotics.

[22]  Alcherio Martinoli,et al.  Relative localization and communication module for small-scale multi-robot systems , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[23]  Alcherio Martinoli,et al.  Small-Scale Robot Formation Movement Using a Simple On-Board Relative Positioning System , 2006, ISER.

[24]  Craig W. Reynolds Flocks, herds, and schools: a distributed behavioral model , 1987, SIGGRAPH.

[25]  Richard M. Murray,et al.  Information flow and cooperative control of vehicle formations , 2004, IEEE Transactions on Automatic Control.

[26]  William M. Spears,et al.  Physicomimetics for mobile robot formations , 2004, Proceedings of the Third International Joint Conference on Autonomous Agents and Multiagent Systems, 2004. AAMAS 2004..