Achieving low tail-latency and high scalability for serializable transactions in edge computing

A distributed database utilizing the wide-spread edge computing servers to provide low-latency data access with the serializability guarantee is highly desirable for emerging edge computing applications. In an edge database, nodes are divided into regions, and a transaction can be categorized as intra-region (IRT) or cross-region (CRT) based on whether it accesses data in different regions. In addition to serializability, we insist that a practical edge database should provide low tail latency for both IRTs and CRTs, and such low latency must be scalable to a large number of regions. Unfortunately, none of existing geo-replicated serializable databases or edge databases can meet such requirements. In this paper, we present Dast (Decentralized Anticipate and STretch), the first edge database that can meet the stringent performance requirements with serializability. Our key idea is to order transactions by anticipating when they are ready to execute: Dast binds an IRT to the latest timestamp and binds a CRT to a future timestamp to avoid the coordination of CRTs blocking IRTs. Dast also carries a new stretchable clock abstraction to tolerate inaccurate anticipations and to handle cross-region data reads. Our evaluation shows that, compared to three relevant serializable databases, Dast's 99-percentile latency was 87.9%~93.2% lower for IRTs and 27.7%~70.4% lower for CRTs; Dast's low latency is scalable to a large number of regions.

[1]  Bikramjit Singh,et al.  5G URLLC: Design Challenges and System Concepts , 2018, 2018 15th International Symposium on Wireless Communication Systems (ISWCS).

[2]  Leslie Lamport,et al.  The part-time parliament , 1998, TOCS.

[3]  Ying Zhang,et al.  A Measurement Study of Internet Delay Asymmetry , 2008, PAM.

[4]  Murat Demirbas,et al.  Logical Physical Clocks , 2014, OPODIS.

[5]  Thomas Neumann,et al.  No False Negatives: Accepting All Useful Schedules in a Fast Serializable Many-Core System , 2019, 2019 IEEE 35th International Conference on Data Engineering (ICDE).

[6]  Yan Song,et al.  Community detection in power grids based on Louvain heuristic algorithm , 2017, 2017 IEEE Conference on Energy Internet and Energy System Integration (EI2).

[7]  Wojciech Golab,et al.  Ocean Vista: Gossip-Based Visibility Control for Speedy Geo-Distributed Transactions , 2019, Proc. VLDB Endow..

[8]  Kai Wang,et al.  Enabling Collaborative Edge Computing for Software Defined Vehicular Networks , 2018, IEEE Network.

[9]  Jim Gray,et al.  A critique of ANSI SQL isolation levels , 1995, SIGMOD '95.

[10]  Gargi Bag,et al.  Challenges and opportunities of 5G in power grids , 2017 .

[11]  Zechao Shang Next Generation Consistency Enforcement , 2017, CIDR.

[12]  Francisco Moura,et al.  Optimistic total order in wide area networks , 2002, 21st IEEE Symposium on Reliable Distributed Systems, 2002. Proceedings..

[13]  Tim Kraska,et al.  MDCC: multi-data center consistency , 2012, EuroSys '13.

[14]  Bernard Wong,et al.  Domino: using network measurements to reduce state machine replication latency in WANs , 2020, CoNEXT.

[15]  Leslie Lamport,et al.  Reaching Agreement in the Presence of Faults , 1980, JACM.

[16]  Fernando Pedone,et al.  Clock-RSM: Low-Latency Inter-datacenter State Machine Replication Using Loosely Synchronized Physical Clocks , 2014, 2014 44th Annual IEEE/IFIP International Conference on Dependable Systems and Networks.

[17]  Franco Cicirelli,et al.  An edge-based platform for dynamic Smart City applications , 2017, Future Gener. Comput. Syst..

[18]  John K. Ousterhout,et al.  In Search of an Understandable Consensus Algorithm , 2014, USENIX ATC.

[19]  Vasaka Visoottiviseth,et al.  Toward Fast and Scalable Key-Value Stores Based on User Space TCP/IP Stack , 2015, AINTEC.

[20]  Fei Tao,et al.  IoT-Based Intelligent Perception and Access of Manufacturing Resource Toward Cloud Manufacturing , 2014, IEEE Transactions on Industrial Informatics.

[21]  Gustavo Alonso,et al.  Improving the scalability of fault-tolerant database clusters , 2002, Proceedings 22nd International Conference on Distributed Computing Systems.

[22]  Weisong Shi,et al.  Edge Computing: Vision and Challenges , 2016, IEEE Internet of Things Journal.

[23]  Bruce M. Maggs,et al.  The Internet at the Speed of Light , 2014, HotNets.

[24]  Eunyoung Jeong,et al.  mTCP: a Highly Scalable User-level TCP Stack for Multicore Systems , 2014, NSDI.

[25]  Luís E. T. Rodrigues,et al.  Unobtrusive Deferred Update Stabilization for Efficient Geo-Replication , 2017, USENIX Annual Technical Conference.

[26]  Arvind Krishnamurthy,et al.  Building consistent transactions with inconsistent replication , 2015, SOSP.

[27]  Jörg Widmer,et al.  OpenLEON: An End-to-End Emulator from the Edge Data Center to the Mobile Users , 2018, WiNTECH@MOBICOM.

[28]  Leslie Lamport,et al.  Time, clocks, and the ordering of events in a distributed system , 1978, CACM.

[29]  Robbert van Renesse,et al.  Cache Serializability: Reducing Inconsistency in Edge Transactions , 2014, 2015 IEEE 35th International Conference on Distributed Computing Systems.

[30]  Christopher Frost,et al.  Spanner: Google's Globally-Distributed Database , 2012, OSDI.

[31]  Kenneth Salem,et al.  EdgeX: Edge Replication for Web Applications , 2015, 2015 IEEE 8th International Conference on Cloud Computing.

[32]  Rajkumar Buyya,et al.  A Taxonomy and Survey of Content Delivery Networks , 2006 .

[33]  Eddie Kohler,et al.  Speedy transactions in multicore in-memory databases , 2013, SOSP.

[34]  Kun Ren SLOG : Serializable , Low-latency , Geo-replicated Transactions , 2019 .

[35]  Johannes Gehrke,et al.  Improving Optimistic Concurrency Control Through Transaction Batching and Operation Reordering , 2018, Proc. VLDB Endow..

[36]  Divyakant Agrawal,et al.  DPaxos: Managing Data Closer to Users for Low-Latency and Mobile Applications , 2018, SIGMOD Conference.

[37]  Keith Marzullo,et al.  Mencius: Building Efficient Replicated State Machine for WANs , 2008, OSDI.

[38]  M. Slee,et al.  Thrift : Scalable Cross-Language Services Implementation , 2022 .

[39]  Yunzhou Li,et al.  A Novel Mobile Edge Computing-Based Architecture for Future Cellular Vehicular Networks , 2017, 2017 IEEE Wireless Communications and Networking Conference (WCNC).

[40]  Hui-Nien Hung,et al.  Short-Term Traffic Prediction for Edge Computing-Enhanced Autonomous and Connected Cars , 2019, IEEE Transactions on Vehicular Technology.

[41]  Yan Zhang,et al.  Vehicular Networks: Techniques, Standards, and Applications , 2009 .

[42]  Chun-Cheng Lin,et al.  Cost-Efficient Deployment of Fog Computing Systems at Logistics Centers in Industry 4.0 , 2018, IEEE Transactions on Industrial Informatics.

[43]  Wu He,et al.  Internet of Things in Industries: A Survey , 2014, IEEE Transactions on Industrial Informatics.

[44]  Michael Stonebraker,et al.  The End of an Architectural Era (It's Time for a Complete Rewrite) , 2007, VLDB.

[45]  David R. Cheriton,et al.  Specializing object-oriented RPC for functionality and performance , 1996, Proceedings of 16th International Conference on Distributed Computing Systems.

[46]  Yi Lin,et al.  Enhancing Edge Computing with Database Replication , 2007, 2007 26th IEEE International Symposium on Reliable Distributed Systems (SRDS 2007).

[47]  Divyakant Agrawal,et al.  Minimizing Commit Latency of Transactions in Geo-Replicated Data Stores , 2015, SIGMOD Conference.

[48]  Murat Demirbas,et al.  WPaxos: Wide Area Network Flexible Consensus , 2017, IEEE Transactions on Parallel and Distributed Systems.

[49]  Hideaki Kimura,et al.  Mostly-Optimistic Concurrency Control for Highly Contended Dynamic Workloads on a Thousand Cores , 2016, Proc. VLDB Endow..

[50]  Semih Salihoglu,et al.  Workload-Aware CPU Performance Scaling for Transactional Database Systems , 2018, SIGMOD Conference.

[51]  Daniel J. Abadi,et al.  Fast Distributed Transactions and Strongly Consistent Replication for OLTP Database Systems , 2014, ACM Trans. Database Syst..

[52]  Xiaobo Zhou,et al.  Edge Computing in Industrial Internet of Things: Architecture, Advances and Challenges , 2020, IEEE Communications Surveys & Tutorials.

[53]  Peter Van Roy,et al.  Speculative Transaction Processing in Geo-Replicated Data Stores , 2017 .

[54]  Mahadev Satyanarayanan,et al.  The Emergence of Edge Computing , 2017, Computer.

[55]  Philip A. Bernstein,et al.  Formal Aspects of Serializability in Database Concurrency Control , 1979, IEEE Transactions on Software Engineering.

[56]  Alan Fekete,et al.  YCSB+T: Benchmarking web-scale transactional databases , 2014, 2014 IEEE 30th International Conference on Data Engineering Workshops.

[57]  Weisong Shi,et al.  Edge Computing for Autonomous Driving: Opportunities and Challenges , 2019, Proceedings of the IEEE.

[58]  Nada Golmie,et al.  A Survey on Industrial Internet of Things: A Cyber-Physical Systems Perspective , 2018, IEEE Access.

[59]  Miguel Oom Temudo de Castro,et al.  Practical Byzantine fault tolerance , 1999, OSDI '99.

[60]  Feng Xia,et al.  Deep Reinforcement Learning for Vehicular Edge Computing , 2019, ACM Trans. Intell. Syst. Technol..

[61]  Hari Balakrishnan,et al.  Tolerating byzantine faults in transaction processing systems using commit barrier scheduling , 2007, SOSP.

[62]  Sameh Elnikety,et al.  Clock-SI: Snapshot Isolation for Partitioned Data Stores Using Loosely Synchronized Clocks , 2013, 2013 IEEE 32nd International Symposium on Reliable Distributed Systems.

[63]  Michael Stonebraker,et al.  E-Store: Fine-Grained Elastic Partitioning for Distributed Transaction Processing , 2014, Proc. VLDB Endow..

[64]  Yi Lu,et al.  STAR: Scaling Transactions through Asymmetric Replication , 2018, Proc. VLDB Endow..

[65]  Suraj C. Kothari,et al.  Preventing SQL injection attacks in stored procedures , 2006, Australian Software Engineering Conference (ASWEC'06).

[66]  Meikang Qiu,et al.  A Scalable and Quick-Response Software Defined Vehicular Network Assisted by Mobile Edge Computing , 2017, IEEE Communications Magazine.

[67]  Luís Rodrigues,et al.  Combining High Throughput and Low Migration Latency for Consistent Data Storage on the Edge , 2020, 2020 29th International Conference on Computer Communications and Networks (ICCCN).

[68]  Divyakant Agrawal,et al.  MaaT: Effective and scalable coordination of distributed transactions in the cloud , 2014, Proc. VLDB Endow..

[69]  Tim Brecht,et al.  Carousel: Low-Latency Transaction Processing for Globally-Distributed Data , 2018, SIGMOD Conference.

[70]  Ippokratis Pandis,et al.  ERMIA: Fast Memory-Optimized Database System for Heterogeneous Workloads , 2016, SIGMOD Conference.

[71]  Jinyang Li,et al.  Consolidating Concurrency Control and Consensus for Commits under Conflicts , 2016, OSDI.

[72]  Jeffrey F. Naughton,et al.  Transaction reordering with application to synchronized scans , 2008, DOLAP '08.

[73]  Jialin Li,et al.  Eris: Coordination-Free Consistent Transactions Using In-Network Concurrency Control , 2017, SOSP.

[74]  Hector Garcia-Molina,et al.  Main Memory Database Systems: An Overview , 1992, IEEE Trans. Knowl. Data Eng..

[75]  Shamkant B. Navathe,et al.  Vertical partitioning algorithms for database design , 1984, TODS.

[76]  Hein Meling,et al.  When You Don't Trust Clients: Byzantine Proposer Fast Paxos , 2012, 2012 IEEE 32nd International Conference on Distributed Computing Systems.

[77]  David Mazières Paxos Made Practical , 2007 .

[78]  Barbara Liskov,et al.  Granola: Low-Overhead Distributed Transaction Coordination , 2012, USENIX Annual Technical Conference.

[79]  Gottfried Vossen,et al.  Transactional Information Systems: Theory, Algorithms, and the Practice of Concurrency Control and Recovery , 2002 .

[80]  Weihai Chen,et al.  Industrial IoT in 5G environment towards smart manufacturing , 2018, J. Ind. Inf. Integr..

[81]  J. T. Robinson,et al.  On optimistic methods for concurrency control , 1979, TODS.

[82]  Srinivas Devadas,et al.  TicToc: Time Traveling Optimistic Concurrency Control , 2016, SIGMOD Conference.

[83]  Gustavo Alonso,et al.  Database replication techniques: a three parameter classification , 2000, Proceedings 19th IEEE Symposium on Reliable Distributed Systems SRDS-2000.

[84]  Michael Stonebraker,et al.  H-store: a high-performance, distributed main memory transaction processing system , 2008, Proc. VLDB Endow..

[85]  Daniel J. Abadi,et al.  The case for determinism in database systems , 2010, Proc. VLDB Endow..

[86]  Yang Zhang,et al.  Extracting More Concurrency from Distributed Transactions , 2014, OSDI.

[87]  Beng Chin Ooi,et al.  The Disruptions of 5G on Data-Driven Technologies and Applications , 2019, IEEE Transactions on Knowledge and Data Engineering.

[88]  Mianxiong Dong,et al.  Secure and Efficient Vehicle-to-Grid Energy Trading in Cyber Physical Systems: Integration of Blockchain and Edge Computing , 2020, IEEE Transactions on Systems, Man, and Cybernetics: Systems.