Identification of ciliated sensory neuron-expressed genes in Caenorhabditis elegans using targeted pull-down of poly(A) tails

It is not always easy to apply microarray technology to small numbers of cells because of the difficulty in selectively isolating mRNA from such cells. We report here the preparation of mRNA from ciliated sensory neurons of Caenorhabditis elegans using the mRNA-tagging method, in which poly(A) RNA was co-immunoprecipitated with an epitope-tagged poly(A)-binding protein specifically expressed in sensory neurons. Subsequent cDNA microarray analyses led to the identification of a panel of sensory neuron-expressed genes.

[1]  C. Burd,et al.  The mRNA poly(A)-binding protein: localization, abundance, and RNA-binding specificity. , 1994, Experimental cell research.

[2]  V. Reinke,et al.  A global profile of germline gene expression in C. elegans. , 2000, Molecular cell.

[3]  K. Gengyo-Ando,et al.  Characterization of mutations induced by ethyl methanesulfonate, UV, and trimethylpsoralen in the nematode Caenorhabditis elegans. , 2000, Biochemical and biophysical research communications.

[4]  D. Moerman,et al.  Improved detection of small deletions in complex pools of DNA. , 2002, Nucleic acids research.

[5]  Diana S Chu,et al.  A molecular link between gene-specific and chromosome-wide transcriptional repression. , 2002, Genes & development.

[6]  S. Brenner,et al.  The structure of the nervous system of the nematode Caenorhabditis elegans. , 1986, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[7]  Nektarios Tavernarakis,et al.  UNC-4/UNC-37-dependent repression of motor neuron-specific genes controls synaptic choice in Caenorhabditis elegans. , 1999, Genes & development.

[8]  A. Hart,et al.  Feeding status and serotonin rapidly and reversibly modulate a Caenorhabditis elegans chemosensory circuit. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[9]  J. Fleming,et al.  Basic culture methods. , 1995, Methods in cell biology.

[10]  J. Culotti,et al.  Axonal guidance mutants of Caenorhabditis elegans identified by filling sensory neurons with fluorescein dyes. , 1985, Developmental biology.

[11]  Nektarios Tavernarakis,et al.  unc-8, a DEG/ENaC Family Member, Encodes a Subunit of a Candidate Mechanically Gated Channel That Modulates C. elegans Locomotion , 1997, Neuron.

[12]  Q. Mitrovich,et al.  Unproductively spliced ribosomal protein mRNAs are natural targets of mRNA surveillance in C. elegans. , 2000, Genes & development.

[13]  S. Tenenbaum,et al.  Identifying mRNA subsets in messenger ribonucleoprotein complexes by using cDNA arrays. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[14]  Stuart K. Kim,et al.  Downstream targets of let-60 Ras in Caenorhabditis elegans. , 2002, Developmental biology.

[15]  J. Thomas,et al.  The RFX-type transcription factor DAF-19 regulates sensory neuron cilium formation in C. elegans. , 2000, Molecular cell.

[16]  M. Labouesse [Caenorhabditis elegans]. , 2003, Medecine sciences : M/S.

[17]  Tanya M. Teslovich,et al.  Basal body dysfunction is a likely cause of pleiotropic Bardet–Biedl syndrome , 2003, Nature.

[18]  David E Hill,et al.  A first version of the Caenorhabditis elegans Promoterome. , 2004, Genome research.

[19]  T. Ishihara,et al.  A novel WD40 protein, CHE-2, acts cell-autonomously in the formation of C. elegans sensory cilia. , 1999, Development.

[20]  F. Hildebrandt,et al.  A novel gene encoding an SH3 domain protein is mutated in nephronophthisis type 1 , 1997, Nature Genetics.

[21]  Michael A. Beer,et al.  Predicting Gene Expression from Sequence , 2004, Cell.

[22]  A. Nayır,et al.  The gene mutated in juvenile nephronophthisis type 4 encodes a novel protein that interacts with nephrocystin , 2002, Nature Genetics.

[23]  O. Hobert,et al.  Genomic cis-regulatory architecture and trans-acting regulators of a single interneuron-specific gene battery in C. elegans. , 2004, Developmental cell.

[24]  W. J. Kent,et al.  BLAT--the BLAST-like alignment tool. , 2002, Genome research.

[25]  V. Ambros,et al.  Efficient gene transfer in C.elegans: extrachromosomal maintenance and integration of transforming sequences. , 1991, The EMBO journal.

[26]  M. Nonet,et al.  Synaptic function is impaired but not eliminated in C. elegans mutants lacking synaptotagmin , 1993, Cell.

[27]  A. Fire,et al.  Sequence requirements for myosin gene expression and regulation in Caenorhabditis elegans. , 1993, Genetics.

[28]  M Mochii,et al.  Use of cDNA subtraction and RNA interference screens in combination reveals genes required for germ-line development in Caenorhabditis elegans , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[29]  Barrett C. Foat,et al.  Identification of genes expressed in C. elegans touch receptor neurons , 2002, Nature.

[30]  Cori Bargmann,et al.  odr-10 Encodes a Seven Transmembrane Domain Olfactory Receptor Required for Responses to the Odorant Diacetyl , 1996, Cell.

[31]  Andrew Smith Genome sequence of the nematode C-elegans: A platform for investigating biology , 1998 .

[32]  G. Germino,et al.  From cilia to cyst , 2003, Nature Genetics.

[33]  Joshua M. Stuart,et al.  Chromosomal clustering of muscle-expressed genes in Caenorhabditis elegans , 2002, Nature.

[34]  S. L. Wong,et al.  A Map of the Interactome Network of the Metazoan C. elegans , 2004, Science.

[35]  T. Moore,et al.  Open-reading-frame sequence tags (OSTs) support the existence of at least 17,300 genes in C. elegans , 2001, Nature Genetics.

[36]  N. Munakata [Genetics of Caenorhabditis elegans]. , 1989, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme.

[37]  P. Zipperlen,et al.  Functional genomic analysis of C. elegans chromosome I by systematic RNA interference , 2000, Nature.

[38]  S. Ward,et al.  Electron microscopical reconstruction of the anterior sensory anatomy of the nematode caenorhabditis elegans , 1975, The Journal of comparative neurology.

[39]  D. Gallie A tale of two termini: a functional interaction between the termini of an mRNA is a prerequisite for efficient translation initiation. , 1998, Gene.

[40]  Y. Dong,et al.  Systematic functional analysis of the Caenorhabditis elegans genome using RNAi , 2003, Nature.

[41]  J. Berg Genome sequence of the nematode C. elegans: a platform for investigating biology. , 1998, Science.

[42]  T. Strachan,et al.  Mutations in INVS encoding inversin cause nephronophthisis type 2, linking renal cystic disease to the function of primary cilia and left-right axis determination , 2003, Nature Genetics.

[43]  L. Avery,et al.  Guanylyl cyclase expression in specific sensory neurons: a new family of chemosensory receptors. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[44]  Joshua M. Stuart,et al.  A Gene Expression Map for Caenorhabditis elegans , 2001, Science.

[45]  D. Cohen Involvement of the avian amygdalar homologue (archistriatum posterior and mediale) in defensively conditioned heart rate change , 1975, The Journal of comparative neurology.

[46]  Bernhard Schermer,et al.  Mutations in a novel gene, NPHP3, cause adolescent nephronophthisis, tapeto-retinal degeneration and hepatic fibrosis , 2003, Nature Genetics.

[47]  K Weber,et al.  Essential roles for Caenorhabditis elegans lamin gene in nuclear organization, cell cycle progression, and spatial organization of nuclear pore complexes. , 2000, Molecular biology of the cell.

[48]  Cori Bargmann,et al.  A Putative Cyclic Nucleotide–Gated Channel Is Required for Sensory Development and Function in C. elegans , 1996, Neuron.

[49]  D L Riddle,et al.  Gene expression profiling of cells, tissues, and developmental stages of the nematode C. elegans. , 2003, Cold Spring Harbor symposia on quantitative biology.

[50]  Sebastian A. Leidel,et al.  Functional genomic analysis of cell division in C. elegans using RNAi of genes on chromosome III , 2000, Nature.

[51]  M. Blaxter,et al.  Caenorhabditis elegans is a nematode. , 1998, Science.

[52]  Yuji Kohara,et al.  Large-scale analysis of gene function in Caenorhabditis elegans by high-throughput RNAi , 2001, Current Biology.

[53]  V. Reinke,et al.  Genome-wide analysis of developmental and sex-regulated gene expression profiles in Caenorhabditis elegans. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[54]  C. Spike,et al.  Analysis of osm-6, a gene that affects sensory cilium structure and sensory neuron function in Caenorhabditis elegans. , 1998, Genetics.