Using a Microwave Emission Model to Estimate Soil Moisture from ESTAR Observations during SGP99

Abstract The 1999 Southern Great Plains Hydrology Experiment (SGP99) provides comprehensive datasets for evaluating microwave remote sensing of soil moisture algorithms that involve complex physical properties of soils and vegetation. The Land Surface Microwave Emission Model (LSMEM) is presented and used to retrieve soil moisture from brightness temperatures collected by the airborne Electronically Scanned Thinned Array Radiometer (ESTAR) L-band radiometer. Soil moisture maps for the SGP99 domain are retrieved using LSMEM, surface temperatures computed using the Variable Infiltration Capacity (VIC) land surface model, standard soil datasets, and vegetation parameters estimated through remote sensing. The retrieved soil moisture is validated using field-scale and area-averaged soil moisture collected as part of the SGP99 experiment, and had a rms range for the area-averaged soil moisture of 1.8%–2.8% volumetric soil moisture.

[1]  Eric F. Wood,et al.  Modeling ground heat flux in land surface parameterization schemes , 1999 .

[2]  James R. Wang Passive microwave sensing of soil moisture content: The effects of soil bulk density and surface roughness , 1983 .

[3]  P. Groffman,et al.  Soil moisture variability within remote sensing pixels , 1992 .

[4]  T. Jackson,et al.  Ground‐based investigation of soil moisture variability within remote sensing footprints During the Southern Great Plains 1997 (SGP97) Hydrology Experiment , 1999 .

[5]  F. R. Schiebe,et al.  Large area mapping of soil moisture using the ESTAR passive microwave radiometer , 1995 .

[6]  B. Choudhury,et al.  Remote sensing of soil moisture content over bare field at 1.4 GHz frequency , 1981 .

[7]  T. Schmugge,et al.  Vegetation effects on the microwave emission of soils , 1991 .

[8]  T. Mo,et al.  A model for microwave emission from vegetation‐covered fields , 1982 .

[9]  Yann Kerr,et al.  Soil moisture retrieval from space: the Soil Moisture and Ocean Salinity (SMOS) mission , 2001, IEEE Trans. Geosci. Remote. Sens..

[10]  Thomas J. Jackson,et al.  ESTAR measurements during the Southern Great Plains experiment (SGP99) , 2001, IEEE Trans. Geosci. Remote. Sens..

[11]  Clemens Simmer,et al.  Up‐scaling effects in passive microwave remote sensing: ESTAR 1.4 GHz measurements during SGP '97 , 1999 .

[12]  Thomas J. Jackson,et al.  Soil moisture and TRMM microwave imager relationships in the Southern Great Plains 1999 (SGP99) experiment , 2001, IEEE Trans. Geosci. Remote. Sens..

[13]  B. Choudhury,et al.  Effect of surface roughness on the microwave emission from soils , 1979 .

[14]  Yann Kerr,et al.  Passive microwave remote sensing of land-atmosphere interactions , 1995 .

[15]  K. Kondratyev,et al.  PASSIVE MICROWAVE REMOTE SENSING OF SOIL MOISTURE , 1977 .

[16]  Tsan Mo,et al.  A parameterization of effective soil temperature for microwave emission , 1982 .

[17]  Dennis P. Lettenmaier,et al.  Variable infiltration capacity cold land process model updates , 2003 .

[18]  T. Jackson,et al.  ESTAR: a synthetic aperture microwave radiometer for remote sensing applications , 1994, Proc. IEEE.

[19]  J. Kong,et al.  Theory for passive microwave remote sensing of near‐surface soil moisture , 1977 .

[20]  Wade T. Crow,et al.  An observation system simulation experiment for the impact of land surface heterogeneity on AMSR-E soil moisture retrieval , 2001, IEEE Trans. Geosci. Remote. Sens..

[21]  J. Mahfouf,et al.  Soil moisture analysis combining screen‐level parameters and microwave brightness temperature: A test with field data , 2003 .

[22]  Leung Tsang,et al.  Radiative transfer theory for passive microwave remote sensing of a two‐layer random medium with cylindrical structures , 1980 .

[23]  D. Lettenmaier,et al.  A simple hydrologically based model of land surface water and energy fluxes for general circulation models , 1994 .

[24]  Richard K. Moore,et al.  Microwave Remote Sensing, Active and Passive , 1982 .

[25]  T. Schmugge,et al.  Passive microwave sensing of soil moisture under vegetation canopies , 1982 .

[26]  David M. Le Vine,et al.  Development of the synthetic aperture microwave radiometer, ESTAR , 2001, IEEE Trans. Geosci. Remote. Sens..

[27]  Wade T. Crow,et al.  Multi‐scale dynamics of soil moisture variability observed during SGP'97 , 1999 .

[28]  E. Njoku,et al.  Passive microwave remote sensing of soil moisture , 1996 .

[29]  Thomas J. Jackson,et al.  Soil moisture mapping at regional scales using microwave radiometry: the Southern Great Plains Hydrology Experiment , 1999, IEEE Trans. Geosci. Remote. Sens..

[30]  Thomas J. Jackson,et al.  Soil moisture estimation using special satellite microwave/imager satellite data over a grassland region , 1997 .

[31]  J. D. Tarpley,et al.  Evaluation of the North American Land Data Assimilation System over the southern Great Plains during the warm season , 2003 .

[32]  F. Ulaby,et al.  Microwave Dielectric Behavior of Wet Soil-Part II: Dielectric Mixing Models , 1985, IEEE Transactions on Geoscience and Remote Sensing.

[33]  Jean-Pierre Wigneron,et al.  Simulating L-band emission of forests in view of future satellite applications , 2002, IEEE Trans. Geosci. Remote. Sens..

[34]  Douglas A. Miller,et al.  A Conterminous United States Multilayer Soil Characteristics Dataset for Regional Climate and Hydrology Modeling , 1998 .

[35]  C. Swift,et al.  An improved model for the dielectric constant of sea water at microwave frequencies , 1977, IEEE Journal of Oceanic Engineering.

[36]  Y. Kerr,et al.  A semiempirical model for interpreting microwave emission from semiarid land surfaces as seen from space , 1990 .

[37]  T. Jackson,et al.  Vegetative and Atmospheric Corrections for the Soil Moisture Retrieval from Passive Microwave Remote Sensing Data: Results from the Southern Great Plains Hydrology Experiment 1997 , 2001 .

[38]  E. Engman,et al.  Estimating Soil Moisture From Satellite Microwave Observations: Past and Ongoing Projects, and Relevance to GCIP. , 1999 .

[39]  Richard K. Moore,et al.  From theory to applications , 1986 .

[40]  J. D. Tarpley,et al.  The multi‐institution North American Land Data Assimilation System (NLDAS): Utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system , 2004 .

[41]  Randal D. Koster,et al.  Soil Moisture Memory in Climate Models , 2001 .

[42]  T. Schmugge,et al.  An Empirical Model for the Complex Dielectric Permittivity of Soils as a Function of Water Content , 1980, IEEE Transactions on Geoscience and Remote Sensing.

[43]  Manfred Owe,et al.  Surface moisture and satellite microwave observations in semiarid southern Africa , 1992 .

[44]  M. Univer Ground-based investigation of soil moisture variability within remote sensing footprints during the Southern Great Plains 1997 (SGP97) Hydrology Experiment , 1999 .

[45]  C. Swift,et al.  Initial Results In The Development Of A Synthetic Aperture Microwave Radiometer , 1990 .

[46]  S. Paloscia,et al.  Microwave Emission and Plant Water Content: A Comparison between Field Measurements and Theory , 1986, IEEE Transactions on Geoscience and Remote Sensing.

[47]  T. Jackson,et al.  Soil moisture retrieval over the southern Great Plains: comparisons between experimental remote sensing data and operational products , 2003, IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477).