On the Mitra-Wan Forest Management Problem in Continuous Time

The paper provides a continuous-time version of the discrete-time Mitra-Wan model of optimal forest management, where trees are harvested to maximize the utility of timber flow over an infinite time horizon. The available trees and the other parameters of the problem vary continuously with respect to both time and age of the trees, so that the system is ruled by a partial differential equation. The behavior of optimal or maximal couple is classified in the cases of linear, concave or strictly concave utility, and positive or null discount rate. All sets of data share the common feature that optimal controls need to be more general than functions, i.e. positive measures. Formulas are provided for golden-rule configurations (uniform density functions with cutting at the ages that solve a Faustmann problem) and for Faustmann policies, and their optimality/maximality is discussed. The results do not always confirm the corresponding ones in discrete time.

[1]  Tapan Mitra,et al.  Some Theoretical Results on the Economics of Forestry , 1985 .

[2]  Silvia Faggian,et al.  Hamilton--Jacobi Equations Arising from Boundary Control Problems with State Constraints , 2008, SIAM J. Control. Optim..

[3]  René Garcia,et al.  Are the Effects of Monetary Policy Asymmetric , 1995 .

[4]  Alain Haurie,et al.  Existence of overtaking solutions to infinite dimensional control problems on unbounded time intervals , 1987 .

[5]  Andrew Ang,et al.  Regime Switches in Interest Rates , 1998 .

[6]  S. Salo,et al.  Optimal forest rotation and land values under a borrowing constraint , 2001 .

[7]  Seppo Salo,et al.  On the economics of forest vintages , 2003 .

[8]  R. Cooke Real and Complex Analysis , 2011 .

[9]  P. Samuelson Economics of Forestry in an Evolving Society , 1976 .

[10]  Simon Potter,et al.  Nonlinear Impulse Response Functions , 1998 .

[11]  Emilio Barucci,et al.  Investment in a vintage capital model , 1998 .

[12]  Natali Hritonenko,et al.  From Linear to Nonlinear Utility in Vintage Capital Models , 2008 .

[13]  Duncan K. Foley,et al.  On Two Specifications of Asset Equilibrium in Macroeconomic Models , 1975, Journal of Political Economy.

[14]  W. L. Chan,et al.  Overtaking optimal control problem of age-dependent populations with infinite horizon , 1990 .

[15]  R. Ash,et al.  Probability and measure theory , 1999 .

[16]  E. J. Moore,et al.  Biological capital theory: a question and a conjecture , 1979 .

[17]  Tapan Mitra,et al.  On the faustmann solution to the forest management problem , 1986 .

[18]  S. Salant The equilibrium price path of timber in the absence of replanting: does Hotelling rule the forests too? , 2013 .

[19]  Raouf Boucekkine,et al.  Vintage Capital Growth Theory: Three Breakthroughs , 2011 .

[20]  Daniel E. Sichel Business cycle asymmetry: a deeper look , 1993 .

[21]  W. Romp,et al.  Retirement, Pensions, and Ageing , 2007 .

[22]  Gary Koop,et al.  Do recessions permanently change output , 1993 .

[23]  Charles L. Weise The asymmetric effects of monetary policy: a nonlinear vector , 1999 .

[24]  Marcelle Chauvet,et al.  An Econometric Characterization of Business Cycle Dynamics with Factor Structure and Regime Switching , 1998 .

[25]  O. Tahvonen OPTIMAL HARVESTING OF FOREST AGE CLASSES: A SURVEY OF SOME RECENT RESULTS , 2004 .

[26]  Fausto Gozzi,et al.  ON THE DYNAMIC PROGRAMMING APPROACH FOR OPTIMAL CONTROL PROBLEMS OF PDE'S WITH AGE STRUCTURE , 2004 .

[27]  D. Cass On the Wicksellian Point-Input, Point-Output Model of Capital Accumulation: A Modern View (or, Neoclassicism Slightly Vindicated) , 1973, Journal of Political Economy.

[28]  A. Zaslavski Turnpike properties in the calculus of variations and optimal control , 2005 .

[29]  Silvia Faggian,et al.  Optimal investment models with vintage capital: Dynamic programming approach , 2010 .

[30]  James D. Hamilton A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle , 1989 .

[31]  Amnon Pazy,et al.  Semigroups of Linear Operators and Applications to Partial Differential Equations , 1992, Applied Mathematical Sciences.

[32]  Hans-Martin Krolzig,et al.  The European Business Cycle , 2004 .

[33]  M. Magill,et al.  Some new results on the local stability of the process of capital accumulation , 1977 .

[34]  Raouf Boucekkine,et al.  Replacement Echoes in the Vintage Capital Growth Model , 1997 .

[35]  A Weakly Maximal Golden-Rule Program for a Multi-Sector Economy , 1973 .

[36]  Vladimir M. Veliov,et al.  Optimality conditions for age-structured control systems☆ , 2003 .

[37]  Peter M. Kort,et al.  Anticipation effects of technological progress on capital accumulation: a vintage capital approach , 2006, J. Econ. Theory.

[38]  Raouf Boucekkine,et al.  Creative Destruction, Investment Volatility, and the Average Age of Capital , 1998 .

[39]  On the non-existence of optimal programs in the Robinson-Solow-Srinivasan (RSS) model , 2010 .

[40]  S. Davis,et al.  On the Driving Forces Behind Cyclical Movement, in Employment and Job Reallocation , 1996 .

[41]  Bernardo K. Pagnoncelli,et al.  The stochastic Mitra–Wan forestry model: risk neutral and risk averse cases , 2015 .

[42]  Chang‐Jin Kim,et al.  Dynamic linear models with Markov-switching , 1994 .

[43]  Martin Ellison,et al.  Regime-Dependent Impulse Response Functions in a Markov-Switching Vector Autoregression Model , 2001 .

[44]  Robert A. Stine Non-linear Time Series: A Dynamical System Approach. , 1992 .

[45]  Edwin Hewitt,et al.  Integration by Parts for Stieltjes Integrals , 1960 .

[46]  von Weizäscker,et al.  Existence of Optimal Programs of Accumulation for an Infinite Time Horizon , 1965 .

[47]  A. Mas-Colell,et al.  Microeconomic Theory , 1995 .

[48]  S. Salo,et al.  Optimal Forest Rotation within SituPreferences , 1999 .

[49]  Philip A. Neher,et al.  The economics of forestry when the rate of harvest is constrained , 1979 .

[50]  Silvia Faggian,et al.  Optimal advertising strategies with age-structured goodwill , 2013, Math. Methods Oper. Res..

[51]  Emilio Barucci,et al.  Technology adoption and accumulation in a vintage-capital model , 2001 .

[52]  M. Sensier Asymmetric Interest Rate Effects for the UK Real Economy , 2002 .

[53]  Impulse-Response Functions in Markov-Switching Structural Vector AutoRegressions: a Step Further , 2010 .

[54]  Andrew J. Filardo Business-Cycle Phases and Their Transitional Dynamics , 1994 .

[55]  Jason Faberman,et al.  The Flow Approach to Labor Markets: New Data Sources and Micro-Macro Links , 2006 .

[56]  Adriana Piazza,et al.  An overview of turnpike theory: towards the discounted deterministic case , 2011 .

[57]  Kai Lai Chung,et al.  A Course in Probability Theory , 1949 .

[58]  F. Ramsey,et al.  THE MATHEMATICAL THEORY OF SAVING , 1928 .

[59]  M. Ali Khan,et al.  On the Mitra-Wan forestry model: A unified analysis , 2012, J. Econ. Theory.

[60]  James Tobin,et al.  Neoclassical Growth with Fixed Factor Proportions , 1966 .

[61]  T. Heaps The forestry maximum principle , 1984 .

[62]  Emilio Barucci,et al.  Optimal advertising with a continuum of goods , 1999, Ann. Oper. Res..

[63]  Olli Tahvonen,et al.  Economics of harvesting age-structured fish populations. , 2009 .

[64]  W. Brock On Existence of Weakly Maximal Programmes in a Multi-Sector Economy , 1970 .

[65]  D. Cass,et al.  introduction to Hamiltonian Dynamics in Economics , 1976 .

[66]  Alain Bensoussan,et al.  Representation and Control of Infinite Dimensional Systems (Systems & Control: Foundations & Applications) , 2006 .

[67]  Debraj Ray,et al.  The economics of orchards: An exercise in point-input, flow-output capital theory☆ , 1991 .

[68]  Alain Haurie,et al.  On Existence of Overtaking Optimal Trajectories Over an Infinite Time Horizon , 1976, Math. Oper. Res..

[69]  H. Halkin Necessary conditions for optimal control problems with infinite horizons , 1974 .

[70]  H. Wan Revisiting the Mitra-Wan Tree Farm , 1994 .

[71]  Gabriel Pérez-Quirós,et al.  Commodity Prices and the Business Cycle in Latin America: Living and Dying by Commodities? , 2013, SSRN Electronic Journal.

[72]  Tapan Mitra,et al.  On optimal forest management: A bifurcation analysis , 2010 .

[73]  Timo Teräsvirta Modelling nonlinearity in U.S. Gross national product 1889–1987 , 1995 .

[74]  On uniform convergence of undiscounted optimal programs in the Mitra–Wan forestry model: The strictly concave case , 2010 .

[75]  Silvia Faggian,et al.  Regular Solutions of First-Order Hamilton–Jacobi Equations for Boundary Control Problems and Applications to Economics , 2005 .

[76]  R. Nagel,et al.  One-parameter semigroups for linear evolution equations , 1999 .

[77]  D. Gale On Optimal Development in a Multi-Sector Economy , 1967 .

[78]  Dimensions of Economic Theory and Policy: Essays for Anjan Mukherji , 2011 .

[79]  L. McKenzie,et al.  Optimal economic growth, turnpike theorems and comparative dynamics , 1986 .

[80]  Seppo Salo,et al.  On Equilibrium Cycles and Normal Forests in Optimal Harvesting of Tree Vintages , 2002 .

[81]  S. Levy,et al.  Elements of functional analysis , 1970 .

[82]  M. Hashem Pesaran,et al.  Impulse response analysis in nonlinear multivariate models , 1996 .