Gradient echo imaging

Magnetic resonance imaging (MRI) based on gradient echoes is used in a wide variety of imaging techniques and clinical applications. Gradient echo sequences form the basis for an essential group of imaging methods that find widespread use in clinical practice, particularly when fast imaging is important, as for example in cardiac MRI or contrast‐enhanced MR angiography. However, the term “gradient echo sequence” is somewhat unspecific, as even images acquired with the most common sequences employing the gradient echo for data acquisition can significantly differ in signal, contrast, artifact behavior, and sensitivity to, eg, flow. This is due to the different use of sequence timing and basic sequence building blocks such as spoiler gradients or specific radiofrequency (RF) pulse phase patterns. In this article the basic principles of gradient echo formation compared to spin echo imaging are reviewed and the properties of gradient echo imaging in its simplest form (TR ≫ T2) are described. Further, the most common three variants of fast gradient echo sequences (TR < T2), namely, unbalanced gradient echo, RF spoiled gradient echo, and balanced steady state free precession; are discussed. For each gradient echo sequence type, examples of applications exploiting the specific properties of the individual technique are presented. J. Magn. Reson. Imaging 2012;35:1274–1289. © 2012 Wiley Periodicals, Inc.

[1]  Kensuke Sekihara,et al.  Steady-State Magnetizations in Rapid NMR Imaging Using Small Flip Angles and Short Repetition Intervals , 1987, IEEE Transactions on Medical Imaging.

[2]  Michael Markl,et al.  Multicoil Dixon chemical species separation with an iterative least‐squares estimation method , 2004, Magnetic resonance in medicine.

[3]  R. Kim,et al.  How we perform delayed enhancement imaging. , 2003, Journal of cardiovascular magnetic resonance : official journal of the Society for Cardiovascular Magnetic Resonance.

[4]  R. Freeman,et al.  Phase and intensity anomalies in fourier transform NMR , 1971 .

[5]  Bob S. Hu,et al.  Magnetization transfer time‐of‐flight magnetic resonance angiography , 1992, Magnetic resonance in medicine.

[6]  S. Reeder,et al.  Multiecho reconstruction for simultaneous water‐fat decomposition and T2* estimation , 2007, Journal of magnetic resonance imaging : JMRI.

[7]  Scott B Reeder,et al.  Water–fat separation with IDEAL gradient‐echo imaging , 2007, Journal of magnetic resonance imaging : JMRI.

[8]  M. Prince Gadolinium-enhanced MR aortography. , 1990, Radiology.

[9]  E M Haacke,et al.  Optimizing blood vessel contrast in fast three‐dimensional MRI , 1990, Magnetic resonance in medicine.

[10]  D Matthaei,et al.  Rapid three-dimensional MR imaging using the FLASH technique. , 1986, Journal of computer assisted tomography.

[11]  P Kapeller,et al.  Histopathologic analysis of foci of signal loss on gradient-echo T2*-weighted MR images in patients with spontaneous intracerebral hemorrhage: evidence of microangiopathy-related microbleeds. , 1999, AJNR. American journal of neuroradiology.

[12]  A. Haase,et al.  Rapid NMR imaging of dynamic processes using the FLASII technique , 1986, Magnetic resonance in medicine.

[13]  P. Röschmann,et al.  Susceptibility artefacts in NMR imaging. , 1985, Magnetic resonance imaging.

[14]  B. Rosen,et al.  Perfusion imaging with NMR contrast agents , 1990, Magnetic resonance in medicine.

[15]  S. Posse,et al.  Susceptibility artifacts in spin-echo and gradient-echo imaging , 1990 .

[16]  P. Mansfield Multi-planar image formation using NMR spin echoes , 1977 .

[17]  G. Radda,et al.  Oxygenation dependence of the transverse relaxation time of water protons in whole blood at high field. , 1982, Biochimica et biophysica acta.

[18]  Jürgen Hennig,et al.  Echoes—how to generate, recognize, use or avoid them in MR‐imaging sequences. Part II: Echoes in imaging sequences , 1991 .

[19]  B. Rosen,et al.  High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part I: Mathematical approach and statistical analysis , 1996, Magnetic resonance in medicine.

[20]  Klaus Scheffler,et al.  Moment and direction of the spoiler gradient for effective artifact suppression in RF‐spoiled gradient echo imaging , 2008, Magnetic resonance in medicine.

[21]  D Matthaei,et al.  Dynamic digital subtraction imaging using fast low-angle shot MR movie sequence. , 1986, Radiology.

[22]  F W Wehrli,et al.  Time‐of‐flight effects in MR imaging of flow , 1990, Magnetic resonance in medicine.

[23]  Yu-Chung N. Cheng,et al.  Susceptibility weighted imaging (SWI) , 2004, Zeitschrift fur medizinische Physik.

[24]  G. Glover,et al.  Self‐navigated spiral fMRI: Interleaved versus single‐shot , 1998, Magnetic resonance in medicine.

[25]  E M Haacke,et al.  Reduction of T2* dephasing in gradient field-echo imaging. , 1989, Radiology.

[26]  Weili Lin,et al.  Principles of magnetic resonance imaging: a signal processing perspective [Book Review] , 2000 .

[27]  J. Tsuruda,et al.  Three-dimensional time-of-flight MR angiography in the evaluation of cerebral aneurysms. , 1990, Journal of computer assisted tomography.

[28]  Guoying Liu,et al.  A fast gradient‐recalled MRI technique with increased sensitivity to dynamic susceptibility effects , 1992, Magnetic resonance in medicine.

[29]  Dwight G Nishimura,et al.  Spiral balanced steady‐state free precession cardiac imaging , 2005, Magnetic resonance in medicine.

[30]  W. T. Dixon Simple proton spectroscopic imaging. , 1984, Radiology.

[31]  E. Hahn,et al.  Spin Echoes , 2011 .

[32]  I Isherwood,et al.  Magnetic resonance (MR) cine imaging of the human heart. , 1985, The British journal of radiology.

[33]  J. Hogg Magnetic resonance imaging. , 1994, Journal of the Royal Naval Medical Service.

[34]  J. Debatin,et al.  MR evaluation of ventricular function: true fast imaging with steady-state precession versus fast low-angle shot cine MR imaging: feasibility study. , 2001, Radiology.

[35]  Edwin Wu,et al.  Visualisation of presence, location, and transmural extent of healed Q-wave and non-Q-wave myocardial infarction , 2001, The Lancet.

[36]  S. Reeder,et al.  High-resolution 3D cartilage imaging with IDEAL SPGR at 3 T. , 2007, AJR. American journal of roentgenology.

[37]  N J Pelc,et al.  Optimization of flip angle for T1dependent contrast in MRI , 1993, Magnetic resonance in medicine.

[38]  E M Haacke,et al.  Fast MR imaging: techniques and clinical applications. , 1990, AJR. American journal of roentgenology.

[39]  K. Scheffler,et al.  Single‐breathhold 3D‐trueFISP cine cardiac imaging , 2002, Magnetic resonance in medicine.

[40]  H. Carr STEADY-STATE FREE PRECESSION IN NUCLEAR MAGNETIC RESONANCE , 1958 .

[41]  J. Mugler,et al.  Three‐dimensional magnetization‐prepared rapid gradient‐echo imaging (3D MP RAGE) , 1990, Magnetic resonance in medicine.

[42]  A. Elster,et al.  Gradient-echo MR imaging: techniques and acronyms. , 1993, Radiology.

[43]  V M Haughton,et al.  Magnetic susceptibility artifacts in gradient-recalled echo MR imaging. , 1988, AJNR. American journal of neuroradiology.

[44]  B. Rosen,et al.  High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part II: Experimental comparison and preliminary results , 1996, Magnetic resonance in medicine.

[45]  P. Bandettini,et al.  Echo-planar imaging : theory, technique and application , 1998 .

[46]  C. Higgins,et al.  Magnetic resonance imaging in ischemic heart disease. , 2003, American heart journal.

[47]  K. Scheffler,et al.  Magnetization preparation during the steady state: Fat‐saturated 3D TrueFISP , 2001, Magnetic resonance in medicine.

[48]  D. Tank,et al.  Brain magnetic resonance imaging with contrast dependent on blood oxygenation. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[49]  E M Haacke,et al.  Improving MR image quality in the presence of motion by using rephasing gradients. , 1987, AJR. American journal of roentgenology.

[50]  Juerg Schwitter,et al.  Myocardial perfusion , 2006, Journal of magnetic resonance imaging : JMRI.

[51]  M. Reiser,et al.  Musculoskeletal MR imaging: turbo (fast) spin-echo versus conventional spin-echo and gradient-echo imaging at 0.5 tesla , 1994, Skeletal Radiology.

[52]  M. L. Wood,et al.  Spoiling of transverse magnetization in steady‐state sequences , 1991, Magnetic resonance in medicine.

[53]  K. Scheffler A pictorial description of steady-states in rapid magnetic resonance imaging , 1999 .

[54]  R. Edelman,et al.  Cineangiography of the heart in a single breath hold with a segmented turboFLASH sequence. , 1991, Radiology.

[55]  G. Bodenhausen,et al.  Principles of nuclear magnetic resonance in one and two dimensions , 1987 .

[56]  K. Scheffler,et al.  Principles and applications of balanced SSFP techniques , 2003, European Radiology.

[57]  Jeffrey Tsao,et al.  Ultrafast imaging: Principles, pitfalls, solutions, and applications , 2010, Journal of magnetic resonance imaging : JMRI.

[58]  S. Patz,et al.  Rapid Fourier imaging using steady‐state free precession , 1987, Magnetic resonance in medicine.

[59]  O. Simonetti,et al.  Relationship of MRI delayed contrast enhancement to irreversible injury, infarct age, and contractile function. , 1999, Circulation.

[60]  R M Henkelman,et al.  Elimination of transverse coherences in FLASH MRI , 1988, Magnetic resonance in medicine.

[61]  M. L. Wood,et al.  Optimization of spoiler gradients in FLASH MRI. , 1987, Magnetic resonance imaging.

[62]  R. Luypaert,et al.  Optimization of sequence parameters in fast MR imaging of the brain with FLASH. , 1989, AJNR. American journal of neuroradiology.

[63]  W T Sobol,et al.  On the stationary states in gradient echo imaging , 1996, Journal of magnetic resonance imaging : JMRI.

[64]  W. Edelstein,et al.  Spin warp NMR imaging and applications to human whole-body imaging. , 1980, Physics in medicine and biology.

[65]  D. Gadian NMR and its Applications to Living Systems , 1996 .

[66]  E. Potchen,et al.  Physical principles and application of magnetic resonance angiography. , 1992, Seminars in ultrasound, CT, and MR.

[67]  H. W. Park,et al.  Fast gradient‐echo chemical‐shift imaging , 1988, Magnetic resonance in medicine.

[68]  M. Gyngell,et al.  The application of steady-state free precession in rapid 2DFT NMR imaging: FAST and CE-FAST sequences. , 1988, Magnetic resonance imaging.

[69]  Sabrina S Wilson Radiology , 1938, Glasgow Medical Journal.

[70]  J. Hennig Echoes—how to generate, recognize, use or avoid them in MR‐imaging sequences. Part I: Fundamental and not so fundamental properties of spin echoes , 1991 .

[71]  C. Crawford,et al.  Optimized gradient waveforms for spiral scanning , 1995, Magnetic resonance in medicine.

[72]  J H Duyn,et al.  Steady state effects in fast gradient echo magnetic resonance imaging , 1997, Magnetic resonance in medicine.

[73]  Thierry Metens,et al.  New insights into the mechanisms of signal formation in RF‐spoiled gradient echo sequences , 2005, Magnetic resonance in medicine.