Electronic transport and device prospects of monolayer molybdenum disulphide grown by chemical vapour deposition

[1]  gt hutilisateurs,et al.  IEEE International Electron Devices Meeting (IEDM) , 2016 .

[2]  F. Miao,et al.  Hopping transport through defect-induced localized states in molybdenum disulphide , 2013, Nature Communications.

[3]  K. Tsukagoshi,et al.  Thickness-dependent interfacial Coulomb scattering in atomically thin field-effect transistors. , 2013, Nano letters.

[4]  Madan Dubey,et al.  Electrical performance of monolayer MoS2 field-effect transistors prepared by chemical vapor deposition , 2013 .

[5]  Madan Dubey,et al.  Large-Area 2-D Electronics: Materials, Technology, and Devices , 2013, Proceedings of the IEEE.

[6]  Deji Akinwande,et al.  High-performance, highly bendable MoS2 transistors with high-k dielectrics for flexible low-power systems. , 2013, ACS nano.

[7]  Jing Kong,et al.  Intrinsic structural defects in monolayer molybdenum disulfide. , 2013, Nano letters.

[8]  L. Lauhon,et al.  Band-like transport in high mobility unencapsulated single-layer MoS 2 transistors , 2013, 1304.5567.

[9]  D. Tománek,et al.  Improved carrier mobility in few-layer MoS2 field-effect transistors with ionic-liquid gating. , 2013, ACS nano.

[10]  Hua Zhang,et al.  The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. , 2013, Nature chemistry.

[11]  M. Dresselhaus,et al.  Synthesis and transfer of single-layer transition metal disulfides on diverse surfaces. , 2013, Nano letters.

[12]  P. Ajayan,et al.  Statistical study of deep submicron dual-gated field-effect transistors on monolayer chemical vapor deposition molybdenum disulfide films. , 2013, Nano letters.

[13]  S. Pei,et al.  High mobility and high on/off ratio field-effect transistors based on chemical vapor deposited single-crystal MoS2 grains , 2013, 1303.0086.

[14]  A. Dashora,et al.  Electronic and optical properties of MoS2 (0 0 0 1) thin films: Feasibility for solar cells , 2013 .

[15]  B. Radisavljevic,et al.  Mobility engineering and a metal-insulator transition in monolayer MoS₂. , 2013, Nature materials.

[16]  M. Fuhrer,et al.  Measurement of mobility in dual-gated MoS₂ transistors. , 2013, Nature nanotechnology.

[17]  Jun Lou,et al.  Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. , 2013, Nature materials.

[18]  M. Terrones,et al.  Intrinsic carrier mobility of multi-layered MoS2 field-effect transistors on SiO2 , 2013, 1301.2813.

[19]  G. Steele,et al.  Large and tunable photothermoelectric effect in single-layer MoS2. , 2013, Nano letters.

[20]  J. Appenzeller,et al.  High performance multilayer MoS2 transistors with scandium contacts. , 2013, Nano letters.

[21]  Michael S. Fuhrer,et al.  High mobility ambipolar MoS2 field-effect transistors: Substrate and dielectric effects , 2012, 1212.6292.

[22]  Yong-Wei Zhang,et al.  Quasiparticle band structures and optical properties of strained monolayer MoS 2 and WS 2 , 2012, 1211.5653.

[23]  P. Avouris,et al.  Electroluminescence in single layer MoS2. , 2012, Nano letters.

[24]  A. Kis,et al.  Breakdown of high-performance monolayer MoS2 transistors. , 2012, ACS nano.

[25]  P. Ye,et al.  Channel length scaling of MoS2 MOSFETs. , 2012, ACS nano.

[26]  K. Tsukagoshi,et al.  Quantitative Raman spectrum and reliable thickness identification for atomic layers on insulating substrates. , 2012, ACS nano.

[27]  Lain-Jong Li,et al.  Highly flexible MoS2 thin-film transistors with ion gel dielectrics. , 2012, Nano letters.

[28]  S. Min,et al.  MoS₂ nanosheet phototransistors with thickness-modulated optical energy gap. , 2012, Nano letters.

[29]  Xinran Wang,et al.  Electrical characterization of back-gated bi-layer MoS2 field-effect transistors and the effect of ambient on their performances , 2012 .

[30]  K. Jacobsen,et al.  Phonon-limited mobility inn-type single-layer MoS2from first principles , 2012 .

[31]  Lain‐Jong Li,et al.  Synthesis of Large‐Area MoS2 Atomic Layers with Chemical Vapor Deposition , 2012, Advanced materials.

[32]  Yu‐Chuan Lin,et al.  Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. , 2012, Nano letters.

[33]  Yoshihiro Iwasa,et al.  Ambipolar MoS2 thin flake transistors. , 2012, Nano letters.

[34]  Z. Yin,et al.  Single-layer MoS2 phototransistors. , 2012, ACS nano.

[35]  Kinam Kim,et al.  High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals , 2012, Nature Communications.

[36]  P. Ajayan,et al.  Large Area Vapor Phase Growth and Characterization of MoS2 Atomic Layers on SiO2 Substrate , 2011, 1111.5072.

[37]  Arindam Ghosh,et al.  Nature of electronic states in atomically thin MoS₂ field-effect transistors. , 2011, ACS nano.

[38]  Takashi Hori,et al.  Gate Dielectrics and MOS ULSIs: Principles, Technologies and Applications , 2011 .

[39]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[40]  Woo-Seok Cho,et al.  Thermal and Electronic Properties of Exfoliated Metal Chalcogenides , 2010 .

[41]  B. Radisavljevic,et al.  Visibility of dichalcogenide nanolayers , 2010, Nanotechnology.

[42]  J. Shan,et al.  Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.

[43]  W. Haensch,et al.  Undoped-Body Extremely Thin SOI MOSFETs With Back Gates , 2009, IEEE Transactions on Electron Devices.

[44]  J. Holt,et al.  Gate Length and Performance Scaling of Undoped-Body Extremely Thin SOI MOSFETs , 2009, IEEE Electron Device Letters.

[45]  S. Lebègue,et al.  Electronic structure of two-dimensional crystals from ab-initio theory , 2009, 0901.0440.

[46]  Michael S. Fuhrer,et al.  Realization and electrical characterization of ultrathin crystals of layered transition-metal dichalcogenides , 2007 .

[47]  K. Durose,et al.  Admittance spectroscopy of CdTe∕CdS solar cells subjected to varied nitric-phosphoric etching conditions , 2007 .

[48]  G. Samudra,et al.  Modeling study of the impact of surface roughness on silicon and Germanium UTB MOSFETs , 2005, IEEE Transactions on Electron Devices.

[49]  K. Novoselov,et al.  Two-dimensional atomic crystals. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[50]  R. Street,et al.  Intrinsic hole mobility and trapping in a regioregular poly(thiophene) , 2004, cond-mat/0407502.

[51]  Robert A. Street,et al.  Carrier transport and density of state distributions in pentacene transistors , 2002 .

[52]  D. Ferry,et al.  Transport in nanostructures , 1999 .

[53]  K. F. Lee,et al.  Scaling the Si MOSFET: from bulk to SOI to bulk , 1992 .

[54]  Michael Shur,et al.  International Semiconductor Device Research Symposium (ISDRS-93) , 1992 .

[55]  Nevill Mott,et al.  Conduction in non-crystalline materials , 1989 .

[56]  M. Silver,et al.  Calculation of energy relaxation and transit time due to hopping in an exponential band tail , 1987 .

[57]  Monroe Hopping exponential band tails. , 1985, Physical review letters.

[58]  K.J.S. Cave,et al.  MOS (Metal Oxide Semiconductor) Physics and Technology , 1983 .

[59]  R. Landauer Electrical resistance of disordered one-dimensional lattices , 1970 .

[60]  Stephanie Thalberg,et al.  Fundamentals Of Modern Vlsi Devices , 2016 .

[61]  Takashi Hori,et al.  Gate Dielectrics and MOS ULSIs , 1997 .

[62]  B. Shklovskii,et al.  Hopping transport in solids , 1991 .

[63]  A. Rose,et al.  A physical interpretation of dispersive transport in disordered semiconductors , 1981 .

[64]  N. Mott,et al.  Electronic Processes In Non-Crystalline Materials , 1940 .