Non-Gaussianity, Spectral Index and Tensor Modes in Mixed Inflaton and Curvaton Models

We study non-Gaussianity, the spectral index of primordial scalar fluctuations, and tensor modes in models where fluctuations from the inflaton and the curvaton can both contribute to the present cosmic density fluctuations. Even though simple single-field inflation models generate only tiny non-Gaussianity, if we consider such a mixed scenario, large non-Gaussianity can be produced. Furthermore, we study the inflationary parameters such as the spectral index and the tensor-to-scalar ratio in this kind of models and discuss in what cases models predict the spectral index and tensor modes allowed by the current data while generating large non-Gaussianity, which may have many implications for model-buildings of the inflationary universe.

[1]  Tomo Takahashi,et al.  Primordial curvature fluctuation and its non-Gaussianity in models with modulated reheating , 2008, 0807.3988.

[2]  B. Wandelt,et al.  Evidence of primordial non-Gaussianity (fNL) in the Wilkinson microwave anisotropy probe 3-year data at 2.8sigma. , 2008, Physical review letters.

[3]  K. Koyama,et al.  Non-Gaussianity from the trispectrum in general single field inflation , 2008, 0802.1167.

[4]  Masahide Yamaguchi,et al.  D-term chaotic inflation in supergravity and leptogenesis , 2008, 0802.0525.

[5]  Q. Huang Large non-Gaussianity implication for curvaton scenario , 2008, 0801.0467.

[6]  T. Kawano Chaotic D-Term Inflation , 2007, 0712.2351.

[7]  Masahide Yamaguchi,et al.  Non-Gaussianity in the modulated reheating scenario , 2007, 0709.2545.

[8]  Alex Chambers,et al.  Lattice calculation of non-Gaussianity from preheating , 2007, 0710.4133.

[9]  K. Kadota,et al.  D-TERM CHAOTIC INFLATION IN SUPERGRAVITY , 2007, 0706.2676.

[10]  C. Pallis Reducing the spectral index in F-term hybrid inflation , 2007, hep-ph/0702260.

[11]  D. Parkinson,et al.  WMAP normalization of inflationary cosmologies , 2006, astro-ph/0607275.

[12]  A. Mazumdar,et al.  Very large primordial non-Gaussianity from multiple fields: application to massless preheating , 2005, astro-ph/0512368.

[13]  David Lyth,et al.  Inflation models and observation , 2005, astro-ph/0510441.

[14]  D. Seery,et al.  Primordial non-Gaussianities from multiple-field inflation , 2005, astro-ph/0506056.

[15]  Y. Rodríguez LOW SCALE INFLATION AND THE IMMEDIATE HEAVY CURVATON DECAY , 2004, hep-ph/0411120.

[16]  S. Hannestad What is the lowest possible reheating temperature , 2004, astro-ph/0403291.

[17]  F. Vernizzi Cosmological perturbations from varying masses and couplings , 2003, astro-ph/0311167.

[18]  M. Zaldarriaga Non-Gaussianities in models with a varying inflaton decay rate , 2003, astro-ph/0306006.

[19]  D. Lyth,et al.  Cold dark matter isocurvature perturbation in the curvaton scenario , 2003, astro-ph/0306500.

[20]  L. Kofman Probing String Theory with Modulated Cosmological Fluctuations , 2003, astro-ph/0303614.

[21]  T. Moroi,et al.  Cosmic density perturbations from late decaying scalar condensations , 2002, hep-ph/0206026.

[22]  K. Enqvist,et al.  Adiabatic CMB perturbations in pre - big bang string cosmology , 2001, hep-ph/0109214.

[23]  T. Moroi,et al.  Effects of cosmological moduli fields on cosmic microwave background , 2001, hep-ph/0110096.

[24]  D. Lyth,et al.  Generating the curvature perturbation without an inflaton , 2001, hep-ph/0110002.

[25]  Takahiro Tanaka,et al.  SUPER-HORIZON SCALE DYNAMICS OF MULTI-SCALAR INFLATION , 1998, gr-qc/9801017.

[26]  T. Yanagida,et al.  Natural new inflation in broken supergravity , 1996, hep-ph/9608359.

[27]  Copeland,et al.  False vacuum inflation with Einstein gravity. , 1994, Physical review. D, Particles and fields.

[28]  Suzuki,et al.  Chaotic inflation and baryogenesis in supergravity. , 1993, Physical review. D, Particles and fields.