On a conjecture of R. E. Miles about the convex hull of random points

Denoty bypd+i(Bd,d+m) the probability that the convex hull ofd+m points chosen independently and uniformly from ad-dimensional ballBd possessesd+i(i=1,...,m) vertices. We prove Mile's conjecture that, given any integerm, pd+m(Bd,d+m)»1 asd»∞. This is obvious form=1 and was shown by Kingman form=2 and by Miles form=3. Further, a related result by Miles is generalized, and several consequences are deduced.

[1]  P. A. P. Moran,et al.  A second note on recent research in geometrical probability , 1969, Advances in Applied Probability.

[2]  C. Buchta,et al.  Random polytopes in a ball , 1984 .

[3]  J. F. C. Kingman,et al.  Random secants of a convex body , 1969, Journal of Applied Probability.

[4]  C. Buchta,et al.  Zufallspolygone in konvexen Vielecken. , 1984 .

[5]  R. E. Miles ISOTROPIC RANDOM SIMPLICES , 1971 .

[6]  W. Blaschke Vorlesungen über Differentialgeometrie , 1912 .

[7]  Gewichtete Volumsmittelwerte von Simplices, welche zufällig in einem konvexen Körper des ℝ gewählt werden , 1977 .

[8]  B. Hostinský Sur les Probabilites Geometriques , 1926, The Mathematical Gazette.

[9]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[10]  Random triangles in convex regions , 1983 .

[11]  H. Groemer,et al.  On some mean values associated with a randomly selected simplex in a convex set. , 1973 .

[12]  Victor Klee,et al.  What is the Expected Volume of a Simplex Whose Vertices are Chosen at Random from a Given Convex Body , 1969 .

[13]  D. V. Little A third note on recent research in geometrical probability , 1974, Advances in Applied Probability.

[14]  W. Reed,et al.  Random points in a simplex , 1974 .

[15]  P. Moran A note on recent research in geometrical probability , 1966, Journal of Applied Probability.

[16]  L. Santaló Integral geometry and geometric probability , 1976 .

[17]  H. Groemer On the average size of polytopes in a convex set , 1982 .

[18]  Adrian Baddeley,et al.  A fourth note on recent research in geometrical probability , 1977 .