KiDS-450: The tomographic weak lensing power spectrum and constraints on cosmological parameters
暂无分享,去创建一个
P. Schneider | B. Joachimi | A. Choi | E. A. Valentijn | L. Miller | K. Kuijken | T. Erben | H. Hildebrandt | E. van Uitert | H. Hoekstra | L. Miller | C. Heymans | B. Joachimi | P. Schneider | K. Kuijken | J. Merten | H. Hildebrandt | E. Valentijn | L. Miller | T. Erben | M. Viola | E. V. Uitert | D. Klaes | A. Choi | S. Joudaki | F. Kohlinger | H. Hoekstra | J. Merten | C. Heymans | S. Joudaki | M. Viola | D. Klaes | F. Kohlinger | F. Köhlinger | P. Schneider
[1] E. A. Valentijn,et al. The Astro-WISE datacentric information system , 2012, 1208.0447.
[2] R. Nichol,et al. Euclid Definition Study Report , 2011, 1110.3193.
[3] S. White,et al. A Universal Density Profile from Hierarchical Clustering , 1996, astro-ph/9611107.
[4] F. Feroz,et al. Multimodal nested sampling: an efficient and robust alternative to Markov Chain Monte Carlo methods for astronomical data analyses , 2007, 0704.3704.
[5] P. Schneider,et al. KiDS-450: cosmological parameter constraints from tomographic weak gravitational lensing , 2016, 1606.05338.
[6] H. Hoekstra,et al. A direct measurement of tomographic lensing power spectra from CFHTLenS , 2015, 1509.04071.
[7] F. Feroz,et al. MultiNest: an efficient and robust Bayesian inference tool for cosmology and particle physics , 2008, 0809.3437.
[8] L. Knox. Cosmic Microwave Background Anisotropy Window Functions Revisited , 1999 .
[9] M. Takada,et al. Super-Sample Covariance in Simulations , 2014, 1401.0385.
[10] Yannick Mellier,et al. CFHTLenS tomographic weak lensing cosmological parameter constraints: Mitigating the impact of intrinsic galaxy alignments , 2013, 1303.1808.
[11] N. Gehrels,et al. Spectroscopic Needs for Imaging Dark Energy Experiments , 2015 .
[12] J. Lesgourgues,et al. Non-linear matter power spectrum from Time Renormalisation Group: efficient computation and comparison with one-loop , 2011, 1106.2607.
[13] Massimo Viola,et al. Means of confusion: how pixel noise affects shear estimates for weak gravitational lensing , 2012, 1204.5147.
[14] Ralf Bender,et al. Astro-WISE: Chaining to the Universe , 2007 .
[15] B. Jain,et al. How Many Galaxies Fit in a Halo? Constraints on Galaxy Formation Efficiency from Spatial Clustering , 2000, astro-ph/0006319.
[16] N. R. Napolitano,et al. The third data release of the Kilo-Degree Survey and associated data products , 2017, 1703.02991.
[17] Massimo Brescia,et al. The first and second data releases of the Kilo-Degree Survey , 2015, 1507.00742.
[18] P. Schneider,et al. Analysis of two-point statistics of cosmic shear III. Covariances of shear measures made easy , 2007, 0708.0387.
[19] J. Schaye,et al. The physics driving the cosmic star formation history , 2009, 0909.5196.
[20] J. Lesgourgues,et al. The Cosmic Linear Anisotropy Solving System (CLASS) IV: efficient implementation of non-cold relics , 2011, 1104.2935.
[21] Shahab Joudaki,et al. An accurate halo model for fitting non-linear cosmological power spectra and baryonic feedback models , 2015, 1505.07833.
[22] H. Hoekstra,et al. KiDS-450: testing extensions to the standard cosmological model , 2016, 1610.04606.
[23] S. Dye,et al. The shear power spectrum from the COMBO-17 survey , 2003 .
[24] C. B. D'Andrea,et al. The DES Science Verification weak lensing shear catalogues , 2015, Monthly Notices of the Royal Astronomical Society.
[25] H. Hoekstra,et al. CFHTLenS: the Canada–France–Hawaii Telescope Lensing Survey , 2012, 1210.0032.
[26] C. Heymans,et al. Baryons, neutrinos, feedback and weak gravitational lensing , 2014, 1407.4301.
[27] University College London,et al. Constraints on intrinsic alignment contamination of weak lensing surveys using the MegaZ-LRG sample , 2010, 1008.3491.
[28] Adam D. Myers,et al. Cosmological implications of baryon acoustic oscillation measurements , 2014, 1411.1074.
[29] Edwin Valentijn,et al. Gravitational lensing analysis of the Kilo-Degree Survey , 2015, 1507.00738.
[30] L. Miller,et al. CFHTLenS: the Canada–France–Hawaii Telescope Lensing Survey – imaging data and catalogue products , 2012, 1210.0032.
[31] C. Heymans,et al. Accurate halo-model matter power spectra with dark energy, massive neutrinos and modified gravitational forces , 2016, 1602.02154.
[32] M. Newman. How to determine accuracy of the output of a matrix inversion program , 1974 .
[33] Martin Kilbinger,et al. Cosmology with cosmic shear observations: a review , 2014, Reports on progress in physics. Physical Society.
[34] Michael S. Warren,et al. Toward a Halo Mass Function for Precision Cosmology: The Limits of Universality , 2008, 0803.2706.
[35] Yen-Ting Lin,et al. Second data release of the Hyper Suprime-Cam Subaru Strategic Program , 2019, Publications of the Astronomical Society of Japan.
[36] K. Gorski,et al. HEALPix: A Framework for High-Resolution Discretization and Fast Analysis of Data Distributed on the Sphere , 2004, astro-ph/0409513.
[37] Bonn,et al. Analysis of two-point statistics of cosmic shear - I. Estimators and covariances , 2002, astro-ph/0206182.
[38] Eduardo Serrano,et al. LSST: From Science Drivers to Reference Design and Anticipated Data Products , 2008, The Astrophysical Journal.
[39] C. A. Oxborrow,et al. Planck2015 results , 2015, Astronomy & Astrophysics.
[40] A. Merloni,et al. X-ray spectral modelling of the AGN obscuring region in the CDFS: Bayesian model selection and catalogue , 2014, 1402.0004.
[41] Henk Hoekstra. The effect of imperfect models of point spread function anisotropy on cosmic shear measurements , 2004 .
[42] N. Benı́tez. Bayesian Photometric Redshift Estimation , 1998, astro-ph/9811189.
[43] Edward J. Wollack,et al. Cosmological parameters from pre-planck cosmic microwave background measurements , 2013 .
[44] P. Hudelot,et al. CARS: the CFHTLS-Archive-Research Survey. I. Five-band multi-colour data from 37 sq. deg. CFHTLS-wid , 2008, 0811.2239.
[45] C. Heymans,et al. CFHTLenS and RCSLenS: testing photometric redshift distributions using angular cross-correlations with spectroscopic galaxy surveys , 2015, 1512.03626.
[46] T. Kitching,et al. RCSLenS: The Red Cluster Sequence Lensing Survey , 2016, 1603.07722.
[47] Nick Kaiser,et al. Weak gravitational lensing of distant galaxies , 1992 .
[48] R. Nichol,et al. Cosmic shear measurements with Dark Energy Survey science verification data , 2015, 1507.05598.
[49] T. Kitching,et al. Flat-Sky Pseudo-Cls Analysis for Weak Gravitational Lensing , 2016, Monthly Notices of the Royal Astronomical Society.
[50] C. Heymans,et al. Precision calculations of the cosmic shear power spectrum projection , 2017, 1702.05301.
[51] P. Schneider,et al. Cosmic shear tomography and efficient data compression using COSEBIs , 2012, 1201.2669.
[52] U. Toronto,et al. Estimating the power spectrum of the cosmic microwave background , 1997, astro-ph/9708203.
[53] M. Bartelmann,et al. Weak gravitational lensing , 2016, Scholarpedia.
[54] Laura Castell'o Gomar,et al. Gauge-invariant perturbations in hybrid quantum cosmology , 2015, 1503.03907.
[55] H. Hoekstra,et al. Calibration of weak-lensing shear in the Kilo-Degree Survey , 2016, 1606.05337.
[56] M. Viel,et al. Massive neutrinos and the non‐linear matter power spectrum , 2011, 1109.4416.
[57] M. Schirmer,et al. THELI: CONVENIENT REDUCTION OF OPTICAL, NEAR-INFRARED, AND MID-INFRARED IMAGING DATA , 2013, 1308.4989.
[58] Sarah Bridle,et al. Dark energy constraints from cosmic shear power spectra: impact of intrinsic alignments on photometric redshift requirements , 2007, 0705.0166.
[59] Christopher M. Hirata,et al. Intrinsic alignment-lensing interference as a contaminant of cosmic shear , 2004, astro-ph/0406275.
[60] Joop Schaye,et al. Effect of baryonic feedback on two- and three-point shear statistics: prospects for detection and improved modelling , 2012, 1210.7303.
[61] L. Miller,et al. PROPERTIES OF WEAK LENSING CLUSTERS DETECTED ON HYPER SUPRIME-CAM's 2.3 deg2 FIELD , 2015 .
[62] B. Fields,et al. Big bang nucleosynthesis , 2006 .
[63] N. Afshordi,et al. Extended Limber Approximation , 2008, 0809.5112.
[64] Nathalie Palanque-Delabrouille,et al. Constraint on neutrino masses from SDSS-III/BOSS Lyα forest and other cosmological probes , 2014, 1410.7244.
[65] Jeffrey M. Kubo,et al. THE SDSS CO-ADD: COSMIC SHEAR MEASUREMENT , 2011, 1111.6622.
[66] H. Hoekstra,et al. CFHTLenS: Improving the quality of photometric redshifts with precision photometry , 2011, 1111.4434.
[67] Wayne Hu,et al. Baryonic Features in the Matter Transfer Function , 1997, astro-ph/9709112.
[68] Alan D. Martin,et al. Review of Particle Physics , 2014, 1412.1408.
[69] M. P. Hobson,et al. Importance Nested Sampling and the MultiNest Algorithm , 2013, The Open Journal of Astrophysics.
[70] P. Schneider,et al. COSEBIs: Extracting the full E-/B-mode information from cosmic shear correlation functions , 2010, 1002.2136.
[71] U. Seljak. Weak Lensing Reconstruction and Power Spectrum Estimation: Minimum Variance Methods , 1997, astro-ph/9711124.
[72] C. B. D'Andrea,et al. Cosmology from cosmic shear with Dark Energy Survey science verification data , 2015, 1507.05552.
[73] K. Benabed,et al. Conservative constraints on early cosmology with MONTE PYTHON , 2013 .
[74] David Spergel,et al. Shear power spectrum reconstruction using the pseudo-spectrum method , 2010, 1004.3542.
[75] Huan Lin,et al. Estimating the redshift distribution of photometric galaxy samples , 2008 .
[76] Edward J. Wollack,et al. NINE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: COSMOLOGICAL PARAMETER RESULTS , 2012, 1212.5226.
[77] S. Bridle,et al. Cosmic Discordance: Are Planck CMB and CFHTLenS weak lensing measurements out of tune? , 2014, 1408.4742.
[78] H. Hoekstra,et al. The Shear Testing Programme – I. Weak lensing analysis of simulated ground-based observations , 2005, astro-ph/0506112.
[79] S. Kay,et al. Dark matter halo concentrations in the Wilkinson Microwave Anisotropy Probe year 5 cosmology , 2008, 0804.2486.
[80] Martin White,et al. Power Spectra Estimation for Weak Lensing , 2000 .
[81] Michael S. Warren,et al. THE LARGE-SCALE BIAS OF DARK MATTER HALOS: NUMERICAL CALIBRATION AND MODEL TESTS , 2010, 1001.3162.
[82] M. Takada,et al. Power spectrum super-sample covariance , 2013, 1302.6994.
[83] J. Lesgourgues,et al. The Cosmic Linear Anisotropy Solving System (CLASS). Part II: Approximation schemes , 2011, 1104.2933.
[84] H. Hoekstra,et al. Quantifying the effect of baryon physics on weak lensing tomography , 2011, 1105.1075.
[85] E. Deul,et al. GaBoDS: The Garching-Bonn Deep Survey; IV. Methods for the Image reduction of multi-chip Cameras , 2005 .
[86] H. Rix,et al. Cosmological weak lensing with the HST GEMS survey , 2004, astro-ph/0411324.
[87] Yannick Mellier,et al. CFHTLenS tomographic weak lensing: quantifying accurate redshift distributions , 2012, 1212.3327.
[88] Brad E. Tucker,et al. A 2.4% DETERMINATION OF THE LOCAL VALUE OF THE HUBBLE CONSTANT , 2016, 1604.01424.
[89] H. Hoekstra,et al. 3D cosmic shear: cosmology from CFHTLenS , 2014, 1401.6842.
[90] Edwin A. Valentijn,et al. The Kilo-Degree Survey , 2012, Experimental Astronomy.
[91] Adam Amara,et al. Noise bias in weak lensing shape measurements , 2012, 1203.5050.
[92] C. Heymans,et al. Revisiting CFHTLenS cosmic shear: Optimal E/B mode decomposition using COSEBIs and compressed COSEBIs , 2016, 1601.00115.
[93] Joop Schaye,et al. The effects of galaxy formation on the matter power spectrum: a challenge for precision cosmology , 2011, 1104.1174.
[94] R. Hložek,et al. Planck data reconsidered , 2013, 1312.3313.
[95] Shahab Joudaki,et al. CFHTLenS revisited: assessing concordance with Planck including astrophysical systematics , 2016, 1601.05786.
[96] Robert A. Shaw,et al. Astronomical data analysis software and systems IV : meeting held at Baltimore, Maryland, 25-28 September 1994 , 1995 .
[97] P. Schneider,et al. Systematic tests for position-dependent additive shear bias , 2016, 1605.01056.
[98] H. Hoekstra,et al. Bayesian galaxy shape measurement for weak lensing surveys – III. Application to the Canada–France–Hawaii Telescope Lensing Survey , 2012, 1210.8201.
[99] Takahiro Nishimichi,et al. REVISING THE HALOFIT MODEL FOR THE NONLINEAR MATTER POWER SPECTRUM , 2012, 1208.2701.