A diffuse interface model for quasi–incompressible flows : Sharp interface limits and numerics, ,
暂无分享,去创建一个
Jan Giesselmann | Wolfgang Dreyer | Christiane Kraus | Gonca L. Aki | Johannes Daube | Mirko Kränkel | J. Giesselmann | C. Kraus | J. Daube | Mirko Kränkel | W. Dreyer
[1] D. Kröner. Numerical Schemes for Conservation Laws , 1997 .
[2] J. Rubinstein,et al. Minimizers and gradient flows for singularly perturbed bi-stable potentials with a Dirichlet condition , 1990, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[3] van der Waals , 2010 .
[4] Per-Olof Persson,et al. The Compact Discontinuous Galerkin (CDG) Method for Elliptic Problems , 2007, SIAM J. Sci. Comput..
[5] Paul C. Fife,et al. Dynamics of Layered Interfaces Arising from Phase Boundaries , 1988 .
[6] P. Lax. Hyperbolic systems of conservation laws , 2006 .
[7] Jan Giesselmann,et al. Asymptotic analysis for Korteweg models , 2012 .
[8] J. K. Knowles,et al. Kinetic relations and the propagation of phase boundaries in solids , 1991 .
[9] H. Abels,et al. Thermodynamically Consistent, Frame Indifferent Diffuse Interface Models for Incompressible Two-Phase Flows with Different Densities , 2011, 1104.1336.
[10] D. Kröner,et al. Interface conditions for limits of the Navier–Stokes–Korteweg model , 2011 .
[11] J. E. Hilliard,et al. Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .
[12] J. E. Hilliard,et al. Free Energy of a Nonuniform System. I. Interfacial Free Energy and Free Energy of a Nonuniform System. III. Nucleation in a Two‐Component Incompressible Fluid , 2013 .
[13] Thomas Y. Hou,et al. The long-time motion of vortex sheets with surface tension , 1997 .
[14] D. M. Anderson,et al. DIFFUSE-INTERFACE METHODS IN FLUID MECHANICS , 1997 .
[15] Chang Shu,et al. Diffuse interface model for incompressible two-phase flows with large density ratios , 2007, J. Comput. Phys..
[16] P. Hohenberg,et al. Theory of Dynamic Critical Phenomena , 1977 .
[17] M. Gurtin,et al. TWO-PHASE BINARY FLUIDS AND IMMISCIBLE FLUIDS DESCRIBED BY AN ORDER PARAMETER , 1995, patt-sol/9506001.
[18] Paul Papatzacos,et al. Diffuse-Interface Models for Two-Phase Flow , 2000 .
[19] P. Sternberg. The effect of a singular perturbation on nonconvex variational problems , 1988 .
[20] J. Lowengrub,et al. Quasi–incompressible Cahn–Hilliard fluids and topological transitions , 1998, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[21] On the van der Waals–Cahn–Hilliard phase-field model and its equilibria conditions in the sharp interface limit , 2010, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.
[22] Franck Boyer,et al. A theoretical and numerical model for the study of incompressible mixture flows , 2002 .
[23] P. LeFloch,et al. Hyperbolic Systems of Conservation Laws: The Theory of Classical and Nonclassical Shock Waves , 2002 .
[24] J. D. van der Waals,et al. Thermodynamische Theorie der Kapillarität unter Voraussetzung stetiger Dichteänderung , 1894 .
[25] Yan Xu,et al. Local discontinuous Galerkin methods for the Cahn-Hilliard type equations , 2007, J. Comput. Phys..