A diffuse interface model for quasi–incompressible flows : Sharp interface limits and numerics, ,

In this contribution, we investigate a diffuse interface model for quasi-incompressible flows. We determine corresponding sharp interface limits of two different scalings. The sharp interface limit is deduced by matched asymptotic expansions of the fields in powers of the interface. In particular, we study solutions of the derived system of inner equations and discuss the results within the general setting of jump conditions for sharp interface models. Furthermore, we treat, as a subproblem, the convective Cahn-Hilliard equation numerically by a Local Discontinuous Galerkin scheme.

[1]  D. Kröner Numerical Schemes for Conservation Laws , 1997 .

[2]  J. Rubinstein,et al.  Minimizers and gradient flows for singularly perturbed bi-stable potentials with a Dirichlet condition , 1990, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[3]  van der Waals , 2010 .

[4]  Per-Olof Persson,et al.  The Compact Discontinuous Galerkin (CDG) Method for Elliptic Problems , 2007, SIAM J. Sci. Comput..

[5]  Paul C. Fife,et al.  Dynamics of Layered Interfaces Arising from Phase Boundaries , 1988 .

[6]  P. Lax Hyperbolic systems of conservation laws , 2006 .

[7]  Jan Giesselmann,et al.  Asymptotic analysis for Korteweg models , 2012 .

[8]  J. K. Knowles,et al.  Kinetic relations and the propagation of phase boundaries in solids , 1991 .

[9]  H. Abels,et al.  Thermodynamically Consistent, Frame Indifferent Diffuse Interface Models for Incompressible Two-Phase Flows with Different Densities , 2011, 1104.1336.

[10]  D. Kröner,et al.  Interface conditions for limits of the Navier–Stokes–Korteweg model , 2011 .

[11]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .

[12]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy and Free Energy of a Nonuniform System. III. Nucleation in a Two‐Component Incompressible Fluid , 2013 .

[13]  Thomas Y. Hou,et al.  The long-time motion of vortex sheets with surface tension , 1997 .

[14]  D. M. Anderson,et al.  DIFFUSE-INTERFACE METHODS IN FLUID MECHANICS , 1997 .

[15]  Chang Shu,et al.  Diffuse interface model for incompressible two-phase flows with large density ratios , 2007, J. Comput. Phys..

[16]  P. Hohenberg,et al.  Theory of Dynamic Critical Phenomena , 1977 .

[17]  M. Gurtin,et al.  TWO-PHASE BINARY FLUIDS AND IMMISCIBLE FLUIDS DESCRIBED BY AN ORDER PARAMETER , 1995, patt-sol/9506001.

[18]  Paul Papatzacos,et al.  Diffuse-Interface Models for Two-Phase Flow , 2000 .

[19]  P. Sternberg The effect of a singular perturbation on nonconvex variational problems , 1988 .

[20]  J. Lowengrub,et al.  Quasi–incompressible Cahn–Hilliard fluids and topological transitions , 1998, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[21]  On the van der Waals–Cahn–Hilliard phase-field model and its equilibria conditions in the sharp interface limit , 2010, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[22]  Franck Boyer,et al.  A theoretical and numerical model for the study of incompressible mixture flows , 2002 .

[23]  P. LeFloch,et al.  Hyperbolic Systems of Conservation Laws: The Theory of Classical and Nonclassical Shock Waves , 2002 .

[24]  J. D. van der Waals,et al.  Thermodynamische Theorie der Kapillarität unter Voraussetzung stetiger Dichteänderung , 1894 .

[25]  Yan Xu,et al.  Local discontinuous Galerkin methods for the Cahn-Hilliard type equations , 2007, J. Comput. Phys..