Synthesis of poly(ethylene glycol)-co-poly(caprolactone) di- and triblock copolymers and effect of architecture, dispersity and end-functionalisation on their aqueous self-assembly

Poly(ethylene glycol)-block-polycaprolactone copolymers with different architectures, dispersities and end-groups were prepared and found to form a variety of self-assembled structures in water.

[1]  A. Müller,et al.  Effect of Molecular Weight on the Crystallization and Melt Memory of Poly(ε-caprolactone) (PCL) , 2023, Macromolecules.

[2]  C. Hélix-Nielsen,et al.  Effect of Detergents on Morphology, Size Distribution, and Concentration of Copolymer-Based Polymersomes. , 2021, Langmuir : the ACS journal of surfaces and colloids.

[3]  H. Schönherr,et al.  Giant Biodegradable Poly(ethylene glycol)-block-Poly(ε-caprolactone) Polymersomes by Electroformation. , 2020, Macromolecular bioscience.

[4]  L. Nebhani,et al.  Well defined and responsive amphiphilic block copolymers synthesized using TEMPO initiated thiol-ene reaction , 2019 .

[5]  Lewis D. Blackman,et al.  Permeable Protein-Loaded Polymersome Cascade Nanoreactors by Polymerization-Induced Self-Assembly , 2017, ACS macro letters.

[6]  J. Huwyler,et al.  PEG‐PCL‐based nanomedicines: A biodegradable drug delivery system and its application , 2017, Journal of controlled release : official journal of the Controlled Release Society.

[7]  W. Meier,et al.  Key aspects to yield low dispersity of PEO-b-PCL diblock copolymers and their mesoscale self-assembly , 2016 .

[8]  S. Armes,et al.  Mucin-Inspired Thermoresponsive Synthetic Hydrogels Induce Stasis in Human Pluripotent Stem Cells and Human Embryos , 2016, ACS central science.

[9]  S. Armes,et al.  Order–Order Morphological Transitions for Dual Stimulus Responsive Diblock Copolymer Vesicles , 2016, Macromolecules.

[10]  Rintaro Takahashi,et al.  Intermolecular Interactions and Self-Assembly in Aqueous Solution of a Mixture of Anionic–Neutral and Cationic–Neutral Block Copolymers , 2015 .

[11]  S. Armes,et al.  pH-Responsive Non-Ionic Diblock Copolymers: Ionization of Carboxylic Acid End-Groups Induces an Order–Order Morphological Transition , 2014, Angewandte Chemie.

[12]  Fabian Itel,et al.  Molecular Organization and Dynamics in Polymersome Membranes: A Lateral Diffusion Study , 2014 .

[13]  Zhimei Song,et al.  Linolenic acid-modified PEG-PCL micelles for curcumin delivery. , 2014, International journal of pharmaceutics.

[14]  Maïté Marguet,et al.  Cascade reactions in multicompartmentalized polymersomes. , 2014, Angewandte Chemie.

[15]  D. Hammer,et al.  Aqueous self-assembly of poly(ethylene oxide)-block-poly(ε-caprolactone) (PEO-b-PCL) copolymers: disparate diblock copolymer compositions give rise to nano- and meso-scale bilayered vesicles. , 2013, Nanoscale.

[16]  L. Theogarajan,et al.  Stealth polymeric vesicles via metal-free click coupling. , 2013, Biomacromolecules.

[17]  Shalini V. Gohil,et al.  Functionalized polymersomes for biomedical applications , 2013 .

[18]  Yiyong Mai,et al.  Self-assembly of block copolymers. , 2012, Chemical Society reviews.

[19]  J. Ji,et al.  Biocompatible and biodegradable polymersomes as delivery vehicles in biomedical applications , 2012 .

[20]  J. Feijen,et al.  Polymersomes for drug delivery: design, formation and characterization. , 2012, Journal of controlled release : official journal of the Controlled Release Society.

[21]  S. Armes,et al.  Predictive Phase Diagrams for RAFT Aqueous Dispersion Polymerization: Effect of Block Copolymer Composition, Molecular Weight, and Copolymer Concentration , 2012 .

[22]  Andrew L. Schmitt,et al.  Unexpected consequences of block polydispersity on the self-assembly of ABA triblock copolymers. , 2012, Journal of the American Chemical Society.

[23]  Zhiyuan Zhong,et al.  Galactose-decorated cross-linked biodegradable poly(ethylene glycol)-b-poly(ε-caprolactone) block copolymer micelles for enhanced hepatoma-targeting delivery of paclitaxel. , 2011, Biomacromolecules.

[24]  Floris P. J. T. Rutjes,et al.  Polymeric vesicles in biomedical applications , 2011 .

[25]  Wolfgang Meier,et al.  Polymeric vesicles: from drug carriers to nanoreactors and artificial organelles. , 2011, Accounts of chemical research.

[26]  W. Meier,et al.  Functionalization of Block Copolymer Vesicle Surfaces , 2011 .

[27]  André E. X. Brown,et al.  Curvature-coupled hydration of Semicrystalline Polymer Amphiphiles yields flexible Worm Micelles but favors rigid Vesicles: polycaprolactone-based block copolymers. , 2010, Macromolecules.

[28]  X. Jing,et al.  Modular Functionalization of Amphiphilic Block Copolymers via Radical-Mediated Thiol−Ene Reaction , 2010 .

[29]  Christopher N Bowman,et al.  Thiol-ene click chemistry. , 2010, Angewandte Chemie.

[30]  A. Misra,et al.  Biomimetic doxorubicin loaded polymersomes from hyaluronan-block-poly(gamma-benzyl glutamate) copolymers. , 2009, Biomacromolecules.

[31]  A. Ryan,et al.  On the mechanism of formation of vesicles from poly(ethylene oxide)-block-poly(caprolactone) copolymers , 2009 .

[32]  J. Hubbell,et al.  A novel method for the encapsulation of biomolecules into polymersomes via direct hydration. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[33]  Roeland J. M. Nolte,et al.  A Polymersome Nanoreactor with Controllable Permeability Induced by Stimuli‐Responsive Block Copolymers , 2009 .

[34]  Giuseppe Battaglia,et al.  Polymersomes: nature inspired nanometer sized compartments , 2009 .

[35]  S. MacNeil,et al.  Preparation and aqueous solution properties of thermoresponsive biocompatible AB diblock copolymers. , 2009, Biomacromolecules.

[36]  S Thayumanavan,et al.  Multi-stimuli sensitive amphiphilic block copolymer assemblies. , 2009, Journal of the American Chemical Society.

[37]  Patrick Keller,et al.  Stimuli-responsive polymer vesicles , 2009 .

[38]  R. Deumens,et al.  Polymers from functional macrolactones as potential biomaterials: enzymatic ring opening polymerization, biodegradation, and biocompatibility. , 2008, Biomacromolecules.

[39]  S. MacNeil,et al.  Biomimetic pH Sensitive Polymersomes for Efficient DNA Encapsulation and Delivery , 2007 .

[40]  S. Okabe,et al.  Electrostatic self-assembly of neutral and polyelectrolyte block copolymers and oppositely charged surfactant. , 2007, The journal of physical chemistry. B.

[41]  C. Gong,et al.  A thermosensitive hydrogel based on biodegradable amphiphilic poly(ethylene glycol)–polycaprolactone–poly(ethylene glycol) block copolymers , 2007 .

[42]  D. Discher,et al.  Shape effects of filaments versus spherical particles in flow and drug delivery. , 2007, Nature nanotechnology.

[43]  D. Adams,et al.  Effect of block length, polydispersity, and salt concentration on PEO-PDEAMA block copolymer structures in dilute solution. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[44]  Peter Gasteier,et al.  Ring-Opening Polymerization of ε-Caprolactone by Means of Mono- and Multifunctional Initiators: Comparison of Chemical and Enzymatic Catalysis , 2006 .

[45]  D. Hammer,et al.  Bioresorbable Vesicles Formed through Spontaneous Self-Assembly of Amphiphilic Poly(ethylene oxide)-block-polycaprolactone. , 2006, Macromolecules.

[46]  A. Ryan,et al.  Bilayers and interdigitation in block copolymer vesicles. , 2005, Journal of the American Chemical Society.

[47]  Xiaotian Liu,et al.  Synthesis and characterization of diblock and triblock copolymer by enzymatic ring-opening polymerization of ε-caprolactone and ATRP of styrene , 2005 .

[48]  Sung Wan Kim,et al.  Caprolactonic poloxamer analog: PEG-PCL-PEG. , 2005, Biomacromolecules.

[49]  Jianyong Yu,et al.  A novel approach to biodegradable block copolymers of ε-caprolactone and δ-valerolactone catalyzed by new aluminum metal complexes , 2004 .

[50]  Chaoliang He,et al.  Study of the Synthesis, Crystallization, and Morphology of Poly(ethylene glycol)−Poly(ε-caprolactone) Diblock Copolymers , 2004 .

[51]  Dennis E Discher,et al.  Self-porating polymersomes of PEG-PLA and PEG-PCL: hydrolysis-triggered controlled release vesicles. , 2004, Journal of controlled release : official journal of the Controlled Release Society.

[52]  Krzysztof Pielichowski,et al.  Differential scanning calorimetry studies on poly(ethylene glycol) with different molecular weights for thermal energy storage materials , 2002 .

[53]  Dennis E. Discher,et al.  Polymer Vesicles , 2022 .

[54]  O. Borisov,et al.  Effect of Salt on Self-Assembly in Charged Block Copolymer Micelles , 2002 .

[55]  M. Malmsten,et al.  Self-assembly in aqueous block copolymer solutions , 1992 .

[56]  D. Dorset,et al.  Crystal structure of poly(iε-caprolactone) , 1990 .

[57]  Y. Yamashita,et al.  Structural Studies of Polyesters. III. Crystal Structure of Poly-ε-caprolactone , 1970 .

[58]  A. Daugaard,et al.  Simple Preparation of Thiol-Ene Particles in Glycerol and Surface Functionalization by Thiol-Ene Chemistry (TEC) and Surface Chain Transfer Free Radical Polymerization (SCT-FRP). , 2018, Macromolecular rapid communications.

[59]  A. Eisenberg,et al.  Control of amphiphilic block copolymer morphologies using solution conditions , 2003, The European physical journal. E, Soft matter.