MXene Ti3C2Tx: A Promising Photothermal Conversion Material and Application in All‐Optical Modulation and All‐Optical Information Loading

All‐optical modulators, where one light modulates the parameters of another light (intensity, phase, frequency, etc.) without external electronic control, have drawn extraordinary attention in all‐optical information processing. In this contribution, by taking advantage of the two‐pass structure of Michelson interferometer and the strong photothermal conversion efficiency of MXene nanomaterials, an all‐optical modulator is demonstrated with a modulation depth of >27 dB, a free spectrum range of 16.8 nm and a pump‐induced phase shift slope of 0.043 π mW−1. Moreover, the all‐optical modulator is successfully employed to switch on/off the intensity of the signal light and load information from one channel to another with comparable response time and baudrate. It is believed that the MXene‐based all‐optical modulator will open a door to practical applications of 2D materials‐based all‐optical devices in all‐optical signal processing.

[1]  Feng Zhang,et al.  An All‐Optical, Actively Q‐Switched Fiber Laser by an Antimonene‐Based Optical Modulator , 2019, Laser & Photonics Reviews.

[2]  Meng Zhang,et al.  A bismuthene-based multifunctional all-optical phase and intensity modulator enabled by photothermal effect , 2019, Journal of Materials Chemistry C.

[3]  Rui Yang,et al.  Multifunctional and Water‐Resistant MXene‐Decorated Polyester Textiles with Outstanding Electromagnetic Interference Shielding and Joule Heating Performances , 2018, Advanced Functional Materials.

[4]  Cheng Zhang,et al.  A solid-state passively Q-switched Tm,Gd:CaF2 laser with a Ti3C2Tx MXene absorber near 2 µm , 2018, Laser Physics Letters.

[5]  Yury Gogotsi,et al.  Electronic and Optical Properties of 2D Transition Metal Carbides and Nitrides (MXenes) , 2018, Advanced materials.

[6]  Qixiang Cheng,et al.  Recent advances in optical technologies for data centers: a review , 2018, Optica.

[7]  Ciyuan Qiu,et al.  Thermo-optic all-optical devices based on two-dimensional materials , 2018, Photonics Research.

[8]  Hao Huang,et al.  Bismuth nanosheets as a Q-switcher for a mid-infrared erbium-doped SrF2 laser , 2018, Photonics Research.

[9]  F. Zhang,et al.  MXene Ti3C2Tx absorber for a 1.06 μm passively Q-switched ceramic laser , 2018, Laser Physics Letters.

[10]  Feng Zhang,et al.  All‐Optical Phosphorene Phase Modulator with Enhanced Stability Under Ambient Conditions , 2018 .

[11]  Yi Luo,et al.  All-optical machine learning using diffractive deep neural networks , 2018, Science.

[12]  Rui Liu,et al.  High-Thermal-Stability and High-Thermal-Conductivity Ti3C2Tx MXene/Poly(vinyl alcohol) (PVA) Composites , 2018, ACS omega.

[13]  Y. Gogotsi,et al.  Saturable Absorption in 2D Ti3C2 MXene Thin Films for Passive Photonic Diodes , 2018, Advanced materials.

[14]  D. Fan,et al.  Broadband Nonlinear Photonics in Few‐Layer MXene Ti3C2Tx (T = F, O, or OH) , 2018 .

[15]  Young In Jhon,et al.  Metallic MXene Saturable Absorber for Femtosecond Mode‐Locked Lasers , 2017, Advanced materials.

[16]  Dianyuan Fan,et al.  Black Phosphorus Based All-Optical-Signal-Processing: Toward High Performances and Enhanced Stability , 2017 .

[17]  Peng Wang,et al.  MXene Ti3C2: An Effective 2D Light-to-Heat Conversion Material. , 2017, ACS nano.

[18]  Yury Gogotsi,et al.  2D metal carbides and nitrides (MXenes) for energy storage , 2017 .

[19]  Liangbi Su,et al.  Dual-wavelength Q-switched Er:SrF2 laser with a black phosphorus absorber in the mid-infrared region. , 2016, Optics express.

[20]  Jianping Chen,et al.  All-optical phase shifter and switch near 1550nm using tungsten disulfide (WS2) deposited tapered fiber. , 2016, Optics express.

[21]  Liang Cheng,et al.  Organic-Base-Driven Intercalation and Delamination for the Production of Functionalized Titanium Carbide Nanosheets with Superior Photothermal Therapeutic Performance. , 2016, Angewandte Chemie.

[22]  Minshen Zhu,et al.  Highly Flexible, Freestanding Supercapacitor Electrode with Enhanced Performance Obtained by Hybridizing Polypyrrole Chains with MXene , 2016 .

[23]  Liangbi Su,et al.  Mid-infrared self-Q-switched Er, Pr:CaF2 diode-pumped laser. , 2016, Optics letters.

[24]  Yury Gogotsi,et al.  Electromagnetic interference shielding with 2D transition metal carbides (MXenes) , 2016, Science.

[25]  Chang E. Ren,et al.  Fabrication of Ti3C2Tx MXene Transparent Thin Films with Tunable Optoelectronic Properties , 2016 .

[26]  L. Tong,et al.  All-optical graphene modulator based on optical Kerr phase shift , 2016 .

[27]  Liyong Ren,et al.  All-optical control of microfiber resonator by graphene's photothermal effect , 2016 .

[28]  Chenhui Yang,et al.  A novel nitrite biosensor based on the direct electrochemistry of hemoglobin immobilized on MXene-Ti3C2 , 2015 .

[29]  S. Wen,et al.  Broadband ultrafast nonlinear optical response of few-layers graphene: toward the mid-infrared regime , 2015 .

[30]  Dianyuan Fan,et al.  Few-layer black phosphorus based saturable absorber mirror for pulsed solid-state lasers. , 2015, Optics express.

[31]  Zhen Zhou,et al.  Recent advances in MXene: Preparation, properties, and applications , 2015 .

[32]  Jianlin Zhao,et al.  Graphene-assisted all-fiber phase shifter and switching , 2015 .

[33]  Peide D. Ye,et al.  Anisotropic in-plane thermal conductivity observed in few-layer black phosphorus , 2015, Nature Communications.

[34]  R. Hui,et al.  Complex refractive index tunability of graphene at 1550 nm wavelength , 2015 .

[35]  Y. Gogotsi,et al.  Ti₃C₂ MXene as a high capacity electrode material for metal (Li, Na, K, Ca) ion batteries. , 2014, ACS applied materials & interfaces.

[36]  Majid Beidaghi,et al.  Structure of nanocrystalline Ti3C2 MXene using atomic pair distribution function. , 2014, Physical review letters.

[37]  Baozhong Liu,et al.  Unique lead adsorption behavior of activated hydroxyl group in two-dimensional titanium carbide. , 2014, Journal of the American Chemical Society.

[38]  Alan E. Willner,et al.  All-Optical Signal Processing , 2014, Journal of Lightwave Technology.

[39]  Yury Gogotsi,et al.  Intercalation and delamination of layered carbides and carbonitrides , 2013, Nature Communications.

[40]  L. Nelson,et al.  Space-division multiplexing in optical fibres , 2013, Nature Photonics.

[41]  S. Sahoo,et al.  Temperature-Dependent Raman Studies and Thermal Conductivity of Few-Layer MoS2 , 2013, 1302.5865.

[42]  K. Novoselov,et al.  A roadmap for graphene , 2012, Nature.

[43]  Pierre-Louis Taberna,et al.  MXene: a promising transition metal carbide anode for lithium-ion batteries , 2012 .

[44]  V. Presser,et al.  Two‐Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2 , 2011, Advanced materials.

[45]  K. Loh,et al.  Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser , 2010, 1003.0154.

[46]  D. Basko,et al.  Graphene mode-locked ultrafast laser. , 2009, ACS nano.

[47]  Feng Wang,et al.  Gate-Variable Optical Transitions in Graphene , 2008, Science.