Cohesin Loss Eliminates All Loop Domains

[1]  Mustafa Mir,et al.  Phase separation drives heterochromatin domain formation , 2017, Nature.

[2]  Alma L. Burlingame,et al.  Liquid droplet formation by HP1α suggests a role for phase separation in heterochromatin , 2017, Nature.

[3]  L. Mirny,et al.  Targeted Degradation of CTCF Decouples Local Insulation of Chromosome Domains from Genomic Compartmentalization , 2017, Cell.

[4]  Peter H. L. Krijger,et al.  The Cohesin Release Factor WAPL Restricts Chromatin Loop Extension , 2017, Cell.

[5]  T. Schlick,et al.  Kilobase Pair Chromatin Fiber Contacts Promoted by Living-System-Like DNA Linker Length Distributions and Nucleosome Depletion. , 2017, The journal of physical chemistry. B.

[6]  S. Q. Xie,et al.  Complex multi-enhancer contacts captured by Genome Architecture Mapping (GAM) , 2017, Nature.

[7]  R. Young,et al.  A Phase Separation Model for Transcriptional Control , 2017, Cell.

[8]  Tamar Schlick,et al.  Linking Chromatin Fibers to Gene Folding by Hierarchical Looping. , 2017, Biophysical journal.

[9]  M. Laub,et al.  CHROMOSOMES: Bacillus subtilis SMC complexes juxtapose chromosome arms as they travel from origin to terminus , 2017 .

[10]  Nuno A. Fonseca,et al.  Two independent modes of chromosome organization are revealed by cohesin removal , 2016, bioRxiv.

[11]  E. Lander,et al.  Local regulation of gene expression by lncRNA promoters, transcription and splicing , 2016, Nature.

[12]  Maxim I Molodtsov,et al.  Rapid movement and transcriptional re‐localization of human cohesin on DNA , 2016, The EMBO journal.

[13]  Peter G Wolynes,et al.  Transferable model for chromosome architecture , 2016, Proceedings of the National Academy of Sciences.

[14]  E. Nora,et al.  CTCF and Cohesin in Genome Folding and Transcriptional Gene Regulation. , 2016, Annual review of genomics and human genetics.

[15]  Neva C. Durand,et al.  Deletion of DXZ4 on the human inactive X chromosome alters higher-order genome architecture , 2016, Proceedings of the National Academy of Sciences.

[16]  James T. Robinson,et al.  Juicebox Provides a Visualization System for Hi-C Contact Maps with Unlimited Zoom. , 2016, Cell systems.

[17]  Neva C. Durand,et al.  Juicer Provides a One-Click System for Analyzing Loop-Resolution Hi-C Experiments. , 2016, Cell systems.

[18]  L. Mirny,et al.  Formation of Chromosomal Domains in Interphase by Loop Extrusion , 2015, bioRxiv.

[19]  D. Koshland,et al.  Single-Molecule Imaging Reveals a Collapsed Conformational State for DNA-Bound Cohesin. , 2016, Cell reports.

[20]  Y. Saga,et al.  Rapid Protein Depletion in Human Cells by Auxin-Inducible Degron Tagging with Short Homology Donors. , 2016, Cell reports.

[21]  Peter H. L. Krijger,et al.  Cause and Consequence of Tethering a SubTAD to Different Nuclear Compartments , 2016, Molecular cell.

[22]  Tamar Schlick,et al.  Hierarchical looping of zigzag nucleosome chains in metaphase chromosomes , 2016, Proceedings of the National Academy of Sciences.

[23]  Shawn M. Gillespie,et al.  Insulator dysfunction and oncogene activation in IDH mutant gliomas , 2015, Nature.

[24]  Peter H. L. Krijger,et al.  CTCF Binding Polarity Determines Chromatin Looping. , 2015, Molecular cell.

[25]  Neva C. Durand,et al.  Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes , 2015, Proceedings of the National Academy of Sciences.

[26]  Michael Q. Zhang,et al.  CRISPR Inversion of CTCF Sites Alters Genome Topology and Enhancer/Promoter Function , 2015, Cell.

[27]  V. Corces,et al.  A CTCF Code for 3D Genome Architecture , 2015, Cell.

[28]  Tamar Schlick,et al.  Chromatin Unfolding by Epigenetic Modifications Explained by Dramatic Impairment of Internucleosome Interactions: A Multiscale Computational Study. , 2015, Journal of the American Chemical Society.

[29]  A. Visel,et al.  Disruptions of Topological Chromatin Domains Cause Pathogenic Rewiring of Gene-Enhancer Interactions , 2015, Cell.

[30]  John T. Lis,et al.  Getting up to speed with transcription elongation by RNA polymerase II , 2015, Nature Reviews Molecular Cell Biology.

[31]  Pak Lui,et al.  Strong scaling of general-purpose molecular dynamics simulations on GPUs , 2014, Comput. Phys. Commun..

[32]  Neva C. Durand,et al.  A 3D Map of the Human Genome at Kilobase Resolution Reveals Principles of Chromatin Looping , 2014, Cell.

[33]  W. Huber,et al.  Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 , 2014, Genome Biology.

[34]  Daniel Jost,et al.  Modeling epigenome folding: formation and dynamics of topologically associated chromatin domains , 2014, Nucleic acids research.

[35]  Tao Liu,et al.  Use model-based Analysis of ChIP-Seq (MACS) to analyze short reads generated by sequencing protein-DNA interactions in embryonic stem cells. , 2014, Methods in molecular biology.

[36]  Jesse R. Dixon,et al.  Cohesin and CTCF differentially affect chromatin architecture and gene expression in human cells , 2013, Proceedings of the National Academy of Sciences.

[37]  Boris Lenhard,et al.  Cohesin-based chromatin interactions enable regulated gene expression within preexisting architectural compartments , 2013, Genome research.

[38]  G. Schroth,et al.  Cohesin-mediated interactions organize chromosomal domain architecture , 2013, The EMBO journal.

[39]  R. Young,et al.  Super-Enhancers in the Control of Cell Identity and Disease , 2013, Cell.

[40]  Stephen C. J. Parker,et al.  Chromatin stretch enhancer states drive cell-specific gene regulation and harbor human disease risk variants , 2013, Proceedings of the National Academy of Sciences.

[41]  John F. Marko,et al.  Self-organization of domain structures by DNA-loop-extruding enzymes , 2012, Nucleic acids research.

[42]  Data production leads,et al.  An integrated encyclopedia of DNA elements in the human genome , 2012 .

[43]  ENCODEConsortium,et al.  An Integrated Encyclopedia of DNA Elements in the Human Genome , 2012, Nature.

[44]  J. Sedat,et al.  Spatial partitioning of the regulatory landscape of the X-inactivation centre , 2012, Nature.

[45]  Jesse R. Dixon,et al.  Topological Domains in Mammalian Genomes Identified by Analysis of Chromatin Interactions , 2012, Nature.

[46]  Steven L Salzberg,et al.  Fast gapped-read alignment with Bowtie 2 , 2012, Nature Methods.

[47]  Andrew D. Smith,et al.  Bioinformatics Applications Note Gene Expression Identifying Dispersed Epigenomic Domains from Chip-seq Data , 2022 .

[48]  David A. Orlando,et al.  Mediator and Cohesin Connect Gene Expression and Chromatin Architecture , 2010, Nature.

[49]  Richard Durbin,et al.  Fast and accurate long-read alignment with Burrows–Wheeler transform , 2010, Bioinform..

[50]  I. Amit,et al.  Comprehensive mapping of long range interactions reveals folding principles of the human genome , 2011 .

[51]  Richard Durbin,et al.  Sequence analysis Fast and accurate short read alignment with Burrows – Wheeler transform , 2009 .

[52]  Joshua A. Anderson,et al.  General purpose molecular dynamics simulations fully implemented on graphics processing units , 2008, J. Comput. Phys..

[53]  H. Aburatani,et al.  Cohesin mediates transcriptional insulation by CCCTC-binding factor , 2008, Nature.

[54]  Wouter de Laat,et al.  CTCF mediates long-range chromatin looping and local histone modification in the beta-globin locus. , 2006, Genes & development.

[55]  K. Nasmyth THE GENOME : Joining , Resolving , and Separating Sister Chromatids During Mitosis and Meiosis , 2006 .