Noncommutativity Makes Determinants Hard
暂无分享,去创建一个
[1] Alexander Russell,et al. Approximating the Permanent via Nonabelian Determinants , 2012, SIAM J. Comput..
[2] Meena Mahajan,et al. Determinant: Old Algorithms, New Insights , 1998, SIAM J. Discret. Math..
[3] Lin Yu-qing,et al. Matching polynomial of graph , 2007 .
[4] Dániel Marx,et al. Exponential Time Complexity of the Permanent and the Tutte Polynomial , 2010, TALG.
[5] Richard J. Lipton,et al. A Monte-Carlo Algorithm for Estimating the Permanent , 1993, SIAM J. Comput..
[6] Alexander I. Barvinok,et al. Polynomial Time Algorithms to Approximate Permanents and Mixed Discriminants Within a Simply Exponential Factor , 1999, Random Struct. Algorithms.
[7] Leslie G. Valiant,et al. The Complexity of Computing the Permanent , 1979, Theor. Comput. Sci..
[8] Steve Chien,et al. Clifford algebras and approximating the permanent , 2003, J. Comput. Syst. Sci..
[9] Y. Drozd,et al. Finite dimensional algebras , 1994 .
[10] Markus Bläser,et al. Complexity of the Cover Polynomial , 2007, ICALP.
[11] Noam Nisan,et al. Lower bounds for non-commutative computation , 1991, STOC '91.
[12] Steve Chien,et al. Almost settling the hardness of noncommutative determinant , 2011, STOC '11.
[13] Eric Vigoda,et al. A polynomial-time approximation algorithm for the permanent of a matrix with nonnegative entries , 2004, JACM.
[14] Steve Chien,et al. Algebras with polynomial identities and computing the determinant , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.