ALE stress update for transient and quasistatic processes

A key issue in Arbitrary Lagrangian–Eulerian (ALE) non-linear solid mechanics is the correct treatment of the convection terms in the constitutive equation. These convection terms, which reflect the relative motion between the finite element mesh and the material, are found for both transient and quasistatic ALE analyses. It is shown in this paper that the same explicit algorithms can be employed to handle the convection terms of the constitutive equation for both types of analyses. The most attractive consequence of this fact is that a quasistatic simulation can be upgraded from Updated Lagrangian (UL) to ALE without significant extra computational cost. These ideas are illustrated by means of two numerical examples. © 1998 John Wiley & Sons, Ltd.

[1]  D. Benson Computational methods in Lagrangian and Eulerian hydrocodes , 1992 .

[2]  J. Huetink On the simulation of thermo-mechanical forming processes , 1986 .

[3]  J. C. Simo,et al.  A framework for finite strain elastoplasticity based on maximum plastic dissipation and the multiplicative decomposition. part II: computational aspects , 1988 .

[4]  A. HUERTAt NEW ALE APPLICATIONS IN NON-LINEAR FAST-TRANSIENT SOLID DYNAMICS , .

[5]  J. Hyvärinen,et al.  An Arbitrary Lagrangian-Eulerian finite element method , 1998 .

[6]  Ted Belytschko,et al.  Arbitrary Lagrangian-Eulerian Petrov-Galerkin finite elements for nonlinear continua , 1988 .

[7]  R. LeVeque Numerical methods for conservation laws , 1990 .

[8]  R. D. Richtmyer,et al.  Difference methods for initial-value problems , 1959 .

[9]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[10]  R. Akkerman,et al.  Finite elements and volumes in a euler-langrange formulation - artificial dissipation versus limited flux schemes , 1995 .

[11]  S. Giuliani An algorithm for continuous rezoning of the hydrodynamic grid in Arbitrary Lagrangian-Eulerian computer codes , 1982 .

[12]  Ted Belytschko,et al.  An arbitrary Lagrangian-Eulerian finite element method for path-dependent materials , 1986 .

[13]  Antonio Huerta,et al.  Viscous flow with large free surface motion , 1988 .

[14]  Josep Sarrate Ramos Modelización numérica de la interacción fluido-solido rígido: desarrollo de algoritmos, generación de mallas y adaptabilidad , 1996 .

[15]  N. Kikuchi,et al.  An arbitrary Lagrangian-Eulerian finite element method for large deformation analysis of elastic-viscoplastic solids , 1991 .

[16]  José María,et al.  Numerical modelling in large strain plasticity with application to tube collapse analysis , 1985 .

[17]  P. Lax,et al.  Systems of conservation laws , 1960 .

[18]  P. Schreurs,et al.  Numerical simulation of forming processes : the use of the Arbitrary-Eulerian-Lagrangian (AEL) formulation and the finite element method , 1983 .

[19]  O. C. Zienkiewicz,et al.  Adaptive remeshing for compressible flow computations , 1987 .

[20]  J. Donea,et al.  An introduction to finite element methods for transient advection problems , 1992 .

[21]  Antonio Huerta,et al.  Large amplitude sloshing with submerged blocks , 1989 .

[22]  Frank P. T. Baaijems An U-ALE formulation of 3-D unsteady viscoelastic flow , 1993 .

[23]  van der Erik Giessen,et al.  SIMULATION OF MATERIALS PROCESSING: THEORY, METHODS AND APPLICATIONS , 1998 .

[24]  Akhtar S. Khan,et al.  Continuum theory of plasticity , 1995 .

[25]  Jean-Philippe Ponthot Traitement unifié de la Mécanique des Milieux Continus Solides en Grandes Transformations par la Méthode des Eléments Finis , 1995 .

[26]  D. Benson An efficient, accurate, simple ALE method for nonlinear finite element programs , 1989 .

[27]  Antonio Huerta,et al.  Arbitrary Lagrangian–Eulerian finite element analysis of strain localization in transient problems , 1995 .

[28]  Antonio Huerta,et al.  Two stress update algorithms for large strains: accuracy analysis and numerical implementation , 1997 .

[29]  L. E. Malvern Introduction to the mechanics of a continuous medium , 1969 .

[30]  J. Donea A Taylor–Galerkin method for convective transport problems , 1983 .

[31]  P. Lax,et al.  Difference schemes for hyperbolic equations with high order of accuracy , 1964 .