A Memory Efficient Fast Distributed Real Time Commit Protocol

Most of the past researches [1], [2], [3] investigate the behavior of distributed real time commit protocols either under update or blind write model. The effect of both types of models has not been investigated collectively. These protocols also require a considerable amount of memory for maintaining temporary objects (data structure) created during execution of transactions and block the WORKDONE message if cohort is dependent. This paper presents an optimized distributed real time commit protocol (MEFCP) based on new locking scheme and write operation divided into update and blind write. The proposed protocol optimizes the memory required for maintaining the transient information of lender & borrower [1]. It also sends the WORKDONE message if borrower has locked the data in mode 2 only. We also compared MEFCP with PROMPT and 2SC commit protocols through simulation.