The accuracy of heavy‐ion mass measurements using time of flight‐ion cyclotron resonance in a Penning trap

Ion motion in a Penning trap and the electrical signals it can produce have been analyzed for the purpose of identifying the important causes of uncertainty in high‐accuracy mass measurements of heavy ions. The role of the azimuthal quadrupole electric field in signal pickup, and its effects on ion motion at the sum frequency of the cyclotron and magnetron motions, have been identified. A useful scheme for calculating the signal strength and strength of the interaction between an applied field and the ion motion has been developed. The important sources of uncertainty in using the sum frequency of the cyclotron and magnetron motions for determining the ion mass are discussed. Particular application is made to the case of cyclotron resonance detection by observation of the time of flight of ejected ions.

[1]  William H. Press,et al.  Numerical recipes , 1990 .

[2]  H. Kluge,et al.  Quadrupole-detection FT-ICR mass spectrometry , 1990 .

[3]  L. Schweikhard,et al.  Parametric‐mode‐excitation/dipole‐mode‐detection Fourier‐transform–ion‐cyclotron‐resonance spectrometry , 1990 .

[4]  Flanagan,et al.  Single-ion cyclotron resonance measurement of M(CO+)/M(N2+). , 1989, Physical review letters.

[5]  L. Schweikhard,et al.  A new detection scheme for Fourier transform‐ion cyclotron resonance spectrometry in Penning traps , 1989 .

[6]  A. Marchi,et al.  Frequency Standards and Metrology , 1989 .

[7]  H. Kluge Precision Measurements of Masses of Radioactive Atoms using ISOLDE and Ion Traps , 1988 .

[8]  J. Andre,et al.  Buffer Gas Cooling of Ions Stored in an R.F. Trap: Computed Properties of the Ionic Cloud , 1988 .

[9]  L. Schweikhard,et al.  First absolute mass measurements of short-lived isotopes , 1987 .

[10]  M. Gross,et al.  Parametric mode operation of a hyperbolic Penning trap for Fourier transform mass spectrometry. , 1987, Analytical chemistry.

[11]  Devoe,et al.  Collective oscillations of stored ions. , 1987, Physical review. A, General physics.

[12]  Wineland,et al.  Laser-cooling limits and single-ion spectroscopy. , 1987, Physical review. A, General physics.

[13]  L. Schweikhard,et al.  In-flight capture of ions into a penning trap , 1986 .

[14]  Lowell S. Brown,et al.  Geonium theory: Physics of a single electron or ion in a Penning trap , 1986 .

[15]  R. Dyck,et al.  Atomic Physics 9 , 1985 .

[16]  R. L. Hunter,et al.  Experimental determination of the effects of space charge on ion cyclotron resonance frequencies , 1983 .

[17]  J. Jeffries,et al.  Theory of space-charge shift of ion cyclotron resonance frequencies , 1983 .

[18]  E. Koets L G Smith's RF mass spectrometer , 1981 .

[19]  M. Hohenstatt,et al.  Localized visible Ba + mono-ion oscillator , 1980 .

[20]  H. Kalinowsky,et al.  A direct determination of the proton electron mass ratio , 1980 .

[21]  Robert L. White,et al.  Exact mass measurement by Fourier transform mass spectrometry , 1980 .

[22]  M. B. Comisarow Signal modeling for ion cyclotron resonance , 1978 .

[23]  David J. Wineland,et al.  Principles of the stored ion calorimeter , 1975 .

[24]  P. Faragó,et al.  On the production of polarized electron beams by spin exchange collisions , 1965 .

[25]  L. Spitzer Physics of fully ionized gases , 1956 .

[26]  F. Bloch EXPERIMENTS ON THE g-FACTOR OF THE ELECTRON , 1953 .

[27]  J. Hipple,et al.  THE MEASUREMENT OF e/M BY CYCLOTRON RESONANCE , 1951 .

[28]  J. Hipple,et al.  A precise Method of Determining the Faraday by Magnetic Resonance , 1949 .