3D simulation of wind turbine rotors at full scale. Part II: Fluid–structure interaction modeling with composite blades

In this two-part paper, we present a collection of numerical methods combined into a single framework, which has the potential for a successful application to wind turbine rotor modeling and simulation. In Part 1 of this paper we focus on: 1. The basics of geometry modeling and analysis-suitable geometry construction for wind turbine rotors; 2. The fluid mechanics formulation and its suitability and accuracy for rotating turbulent flows; 3. The coupling of air flow and a rotating rigid body. In Part 2, we focus on the structural discretization for wind turbine blades and the details of the fluid-structure interaction computational procedures. The methods developed are applied to the simulation of the NREL 5MW offshore baseline wind turbine rotor. The simulations are performed at realistic wind velocity and rotor speed conditions and at full spatial scale. Validation against published data is presented and possibilities of the newly developed computational framework are illustrated on several examples.

[1]  Tayfun E. Tezduyar,et al.  Space-time finite element techniques for computation of fluid-structure interactions , 2005 .

[2]  Niels N. Sørensen,et al.  Overset Grid Flow Simulation on a Modern Wind Turbine , 2008 .

[3]  Jintai Chung,et al.  A Time Integration Algorithm for Structural Dynamics With Improved Numerical Dissipation: The Generalized-α Method , 1993 .

[4]  S. Mittal,et al.  Computation of unsteady incompressible flows with the stabilized finite element methods: Space-time formulations, iterative strategies and massively parallel implementations , 1992 .

[5]  J. Reddy Mechanics of laminated composite plates and shells : theory and analysis , 1996 .

[6]  Peter Schröder,et al.  Integrated modeling, finite-element analysis, and engineering design for thin-shell structures using subdivision , 2002, Comput. Aided Des..

[7]  Tayfun E. Tezduyar,et al.  Fluid–structure interaction modeling and performance analysis of the Orion spacecraft parachutes , 2011 .

[8]  Tayfun E. Tezduyar,et al.  Mesh update strategies in parallel finite element computations of flow problems with moving boundaries and interfaces , 1994 .

[9]  F. M. Jensen,et al.  Structural testing and numerical simulation of a 34 m composite wind turbine blade , 2006 .

[10]  Lakshmi N. Sankar,et al.  Numerical Simulation of the Aerodynamics of Horizontal Axis Wind Turbines under Yawed Flow Conditions , 2005 .

[11]  Michael Ortiz,et al.  Fully C1‐conforming subdivision elements for finite deformation thin‐shell analysis , 2001, International Journal for Numerical Methods in Engineering.

[12]  L. Long,et al.  3-D time-accurate CFD simulations of wind turbine rotor flow fields , 2006 .

[13]  T. Hughes,et al.  Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows , 2007 .

[14]  Yuri Bazilevs,et al.  The bending strip method for isogeometric analysis of Kirchhoff–Love shell structures comprised of multiple patches , 2010 .

[15]  Yuri Bazilevs,et al.  3D simulation of wind turbine rotors at full scale. Part I: Geometry modeling and aerodynamics , 2011 .

[16]  J. Jonkman,et al.  Definition of a 5-MW Reference Wind Turbine for Offshore System Development , 2009 .

[17]  B. Simeon,et al.  Adaptive isogeometric analysis by local h-refinement with T-splines , 2010 .

[18]  John A. Evans,et al.  Isogeometric analysis using T-splines , 2010 .

[19]  Jason Jonkman,et al.  FAST User's Guide , 2005 .

[20]  M. Ortiz,et al.  Subdivision surfaces: a new paradigm for thin‐shell finite‐element analysis , 2000 .

[21]  C. Kong,et al.  Structural investigation of composite wind turbine blade considering various load cases and fatigue life , 2005 .

[22]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[23]  T. Hughes,et al.  Isogeometric Fluid–structure Interaction Analysis with Applications to Arterial Blood Flow , 2006 .

[24]  M. O. L. Hansena,et al.  State of the art in wind turbine aerodynamics and aeroelasticity - DTU Orbit (30/10/2017) , 2007 .

[25]  T. Hughes,et al.  Isogeometric fluid-structure interaction: theory, algorithms, and computations , 2008 .

[26]  Marek Behr,et al.  Parallel finite-element computation of 3D flows , 1993, Computer.

[27]  Jeppe Johansen,et al.  Wind turbine rotor-tower interaction using an incompressible overset grid method , 2009 .

[28]  Tayfun E. Tezduyar,et al.  Automatic mesh update with the solid-extension mesh moving technique , 2004 .

[29]  Tayfun E. Tezduyar,et al.  Finite Element Methods for Fluid Dynamics with Moving Boundaries and Interfaces , 2004 .

[30]  Thomas J. R. Hughes,et al.  NURBS-based isogeometric analysis for the computation of flows about rotating components , 2008 .

[31]  Tayfun E. Tezduyar,et al.  Fluid–structure interaction modeling of parachute clusters , 2011 .

[32]  I. Akkerman,et al.  Large eddy simulation of turbulent Taylor-Couette flow using isogeometric analysis and the residual-based variational multiscale method , 2010, J. Comput. Phys..

[33]  G. Hulbert,et al.  A generalized-α method for integrating the filtered Navier–Stokes equations with a stabilized finite element method , 2000 .

[34]  Roland Wüchner,et al.  Isogeometric shell analysis with Kirchhoff–Love elements , 2009 .