Solid Geometry Processing on Deconstructed Domains

Many tasks in geometry processing are modelled as variational problems solved numerically using the finite element method. For solid shapes, this requires a volumetric discretization, such as a boundary conforming tetrahedral mesh. Unfortunately, tetrahedral meshing remains an open challenge and existing methods either struggle to conform to complex boundary surfaces or require manual intervention to prevent failure. Rather than create a single volumetric mesh for the entire shape, we advocate for solid geometry processing on deconstructed domains, where a large and complex shape is composed of overlapping solid subdomains. As each smaller and simpler part is now easier to tetrahedralize, the question becomes how to account for overlaps during problem modelling and how to couple solutions on each subdomain together algebraically. We explore how and why previous coupling methods fail, and propose a method that couples solid domains only along their boundary surfaces. We demonstrate the superiority of this method through empirical convergence tests and qualitative applications to solid geometry processing on a variety of popular second‐order and fourth‐order partial differential equations.

[1]  Olga Sorkine-Hornung,et al.  Bounded biharmonic weights for real-time deformation , 2011, Commun. ACM.

[2]  Mariette Yvinec,et al.  Variational tetrahedral meshing , 2005, ACM Trans. Graph..

[3]  Dinesh K. Pai,et al.  ArtDefo: accurate real time deformable objects , 1999, SIGGRAPH.

[4]  Alec Jacobson,et al.  Nested cages , 2015, ACM Trans. Graph..

[5]  Michael M. Kazhdan,et al.  Fast and Exact (Poisson) Solvers on Symmetric Geometries , 2015, SGP '15.

[6]  Long Chen FINITE ELEMENT METHOD , 2013 .

[7]  Wenzel Jakob,et al.  Robust hex-dominant mesh generation using field-guided polyhedral agglomeration , 2017, ACM Trans. Graph..

[8]  Marc Alexa,et al.  Localized solutions of sparse linear systems for geometry processing , 2017, ACM Trans. Graph..

[9]  Jonathan Richard Shewchuk,et al.  What is a Good Linear Element? Interpolation, Conditioning, and Quality Measures , 2002, IMR.

[10]  David Bommes,et al.  Boundary element octahedral fields in volumes , 2017, TOGS.

[11]  Mark Meyer,et al.  Harmonic coordinates for character articulation , 2007, ACM Trans. Graph..

[12]  Jean-Christophe Cuillière,et al.  Automatic 3D Mesh Generation of Multiple Domains for Topology Optimization Methods , 2012, IMR.

[13]  Daniele Panozzo,et al.  Tetrahedral meshing in the wild , 2018, ACM Trans. Graph..

[14]  Leonidas J. Guibas,et al.  Probabilistic reasoning for assembly-based 3D modeling , 2011, ACM Trans. Graph..

[15]  Daniel Cohen-Or,et al.  Non-realistic expressive modeling , 2006, SIGGRAPH '06.

[16]  Ronald Fedkiw,et al.  Coupling water and smoke to thin deformable and rigid shells , 2005, SIGGRAPH '05.

[17]  Henry Fuchs,et al.  Fast constructive-solid geometry display in the pixel-powers graphics system , 1986, SIGGRAPH.

[18]  Siddhartha Chaudhuri,et al.  Data-driven suggestions for creativity support in 3D modeling , 2010, ACM Trans. Graph..

[19]  Rainald Loehner,et al.  Overlapping unstructured grids , 2001 .

[20]  Hang Si,et al.  TetGen, a Delaunay-Based Quality Tetrahedral Mesh Generator , 2015, ACM Trans. Math. Softw..

[21]  Gilbert Bernstein,et al.  Fast, Exact, Linear Booleans , 2009, Comput. Graph. Forum.

[22]  Richard Szeliski,et al.  Efficient preconditioning of laplacian matrices for computer graphics , 2013, ACM Trans. Graph..

[23]  Daniel Cohen-Or,et al.  Weak Convex Decomposition by Lines‐of‐sight , 2013, SGP '13.

[24]  Leif Kobbelt,et al.  A remeshing approach to multiresolution modeling , 2004, SGP '04.

[25]  Olga Sorkine-Hornung,et al.  Global parametrization of range image sets , 2011, SA '11.

[26]  Ryan Schmidt,et al.  meshmixer: an interface for rapid mesh composition , 2010, SIGGRAPH '10.

[27]  Hang Si,et al.  TetGen. A 3D Delaunay tetrahedral mesh generator. v.1.2 Users manual , 2012 .

[28]  Marco Attene,et al.  A lightweight approach to repairing digitized polygon meshes , 2010, The Visual Computer.

[29]  Eitan Grinspun,et al.  Natural Boundary Conditions for Smoothing in Geometry Processing , 2017, ACM Trans. Graph..

[30]  Olga Sorkine-Hornung,et al.  Geometric optimization via composite majorization , 2017, ACM Trans. Graph..

[31]  Yoshinori Dobashi,et al.  A Fast Simulation Method Using Overlapping Grids for Interactions between Smoke and Rigid Objects , 2008, Comput. Graph. Forum.

[32]  Kazuhiro Nakahashi,et al.  An Intergrid-Boundary Definition Method for Overset Unstructured Grid Approach , 1999 .

[33]  Bruno Lévy,et al.  Hexahedral-dominant meshing , 2016, TOGS.

[34]  William D. Henshaw,et al.  A Fourth-Order Accurate Method for the Incompressible Navier-Stokes Equations on Overlapping Grids , 1994 .

[35]  Keenan Crane,et al.  Geodesics in heat: A new approach to computing distance based on heat flow , 2012, TOGS.

[36]  Jonathan Richard Shewchuk,et al.  Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator , 1996, WACG.

[37]  Leif Kobbelt,et al.  An intuitive framework for real-time freeform modeling , 2004, ACM Trans. Graph..

[38]  Daniel Cohen-Or,et al.  SnapPaste: an interactive technique for easy mesh composition , 2006, The Visual Computer.

[39]  Steven Fortune Vertex-Rounding a Three-Dimensional Polyhedral Subdivision , 1999, Discret. Comput. Geom..

[40]  Knud D. Andersen,et al.  The Mosek Interior Point Optimizer for Linear Programming: An Implementation of the Homogeneous Algorithm , 2000 .

[41]  Michel Bercovier,et al.  Overlapping non Matching Meshes Domain Decomposition Method in Isogeometric Analysis , 2015, 1502.03756.

[42]  J. Benek,et al.  A flexible grid embedding technique with application to the Euler equations , 1983 .

[43]  Nathan A. Carr,et al.  Repoussé: automatic inflation of 2D artwork , 2008, SBM'08.

[44]  D Kwak,et al.  Computational approach for probing the flow through artificial heart devices. , 1997, Journal of biomechanical engineering.

[45]  Robert Bridson,et al.  The Discretely-Discontinuous Galerkin Coarse Grid for Domain Decomposition , 2015, ArXiv.

[46]  Jonathan Richard Shewchuk,et al.  Isosurface stuffing: fast tetrahedral meshes with good dihedral angles , 2007, ACM Trans. Graph..

[47]  Tamal K. Dey,et al.  Delaunay Mesh Generation , 2012, Chapman and Hall / CRC computer and information science series.

[48]  Gene H. Golub,et al.  Some modified matrix eigenvalue problems , 1973, Milestones in Matrix Computation.

[49]  Alec Jacobson,et al.  Thingi10K: A Dataset of 10, 000 3D-Printing Models , 2016, ArXiv.

[50]  Eitan Grinspun,et al.  Mesh arrangements for solid geometry , 2016, ACM Trans. Graph..

[51]  Alec Jacobson,et al.  Fast winding numbers for soups and clouds , 2018, ACM Trans. Graph..

[52]  Ryan M. Schmidt Drag , Drop , and Clone : An Interactive Interface for Surface Composition , 2011 .

[53]  Eitan Grinspun,et al.  Discrete laplace operators: no free lunch , 2007, Symposium on Geometry Processing.

[54]  Robert Bridson,et al.  Isosurface stuffing improved: acute lattices and feature matching , 2013, SIGGRAPH '13.

[55]  FuchsHenry,et al.  Fast constructive-solid geometry display in the pixel-powers graphics system , 1986 .

[56]  Matthias Nießner,et al.  Opt , 2016, ACM Trans. Graph..

[57]  Leif Kobbelt,et al.  An intuitive framework for real-time freeform modeling , 2004, SIGGRAPH 2004.

[58]  Ronald Fedkiw,et al.  Chimera grids for water simulation , 2013, SCA '13.

[59]  Charles S. Peskin,et al.  Flow patterns around heart valves: a digital computer method for solving the equations of motion , 1973 .

[60]  Barry F. Smith,et al.  Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations , 1996 .

[61]  François Faure,et al.  Multifarious hierarchies of mechanical models for artist assigned levels-of-detail , 2015, Symposium on Computer Animation.

[62]  Mark Meyer,et al.  Discrete Differential-Geometry Operators for Triangulated 2-Manifolds , 2002, VisMath.

[63]  Hans-Peter Seidel,et al.  Automatically Rigging Multi‐component Characters , 2012, Comput. Graph. Forum.

[64]  Hui,et al.  A SET OF SYMMETRIC QUADRATURE RULES ON TRIANGLES AND TETRAHEDRA , 2009 .

[65]  Olga Sorkine-Hornung,et al.  Mixed Finite Elements for Variational Surface Modeling , 2010, Comput. Graph. Forum.

[66]  Eitan Grinspun,et al.  Surface-only liquids , 2016, ACM Trans. Graph..

[67]  David Bommes,et al.  Efficient Linear System Solvers for Mesh Processing , 2005, IMA Conference on the Mathematics of Surfaces.

[68]  Christian Rössl,et al.  Laplacian surface editing , 2004, SGP '04.

[69]  Raif M. Rustamov,et al.  Multiscale Biharmonic Kernels , 2011, Comput. Graph. Forum.

[70]  Daniela Giorgi,et al.  Discrete Laplace-Beltrami operators for shape analysis and segmentation , 2009, Comput. Graph..

[71]  John Snyder,et al.  Freeform vector graphics with controlled thin-plate splines , 2011, ACM Trans. Graph..

[72]  Sebti Foufou,et al.  Exact, robust, and efficient regularized Booleans on general 3D meshes , 2015, Comput. Math. Appl..

[73]  O. C. Zienkiewicz,et al.  Achievements and some unsolved problems of the finite element method , 2000 .

[74]  Michael M. Kazhdan,et al.  Poisson surface reconstruction , 2006, SGP '06.

[75]  Peter Kaufmann,et al.  Discontinuous Galerkin FEM in Computer Graphics , 2012 .

[76]  J. Benek,et al.  A 3-D Chimera Grid Embedding Technique , 1985 .