Inversion and forward estimation with process-based models: An investigation into cost functions, uncertainty-based weights and model-data fusion

[1]  T. Árendás,et al.  Conditional interval reduction method: A possible new direction for the optimization of process based models , 2022, Environ. Model. Softw..

[2]  S. Cabaneros,et al.  Methods used for handling and quantifying model uncertainty of artificial neural network models for air pollution forecasting , 2022, Environ. Model. Softw..

[3]  Xu Xie,et al.  Ground-motion simulation using stochastic finite-fault method combined with a parameter calibration process based on historical seismic data , 2022, Natural Hazards.

[4]  T. Hodson Root-mean-square error (RMSE) or mean absolute error (MAE): when to use them or not , 2022, Geoscientific Model Development.

[5]  O. Ghattas,et al.  The imperative of physics-based modeling and inverse theory in computational science , 2021, Nature Computational Science.

[6]  S. Charbonnier,et al.  The radius of the umbrella cloud helps characterize large explosive volcanic eruptions , 2021, Communications Earth & Environment.

[7]  M. Bursik,et al.  Tephra deposit inversion by coupling Tephra2 with the Metropolis-Hastings algorithm: algorithm introduction and demonstration with synthetic datasets , 2020, Journal of Applied Volcanology.

[8]  H. Wibowo,et al.  Remotely assessing tephra fall building damage and vulnerability: Kelud Volcano, Indonesia , 2020, Journal of Applied Volcanology.

[9]  Luca Merucci,et al.  Ensemble-Based Data Assimilation of Volcanic Ash Clouds from Satellite Observations: Application to the 24 December 2018 Mt. Etna Explosive Eruption , 2020, Atmosphere.

[10]  Rose Rustowicz,et al.  Automated detection and measurement of volcanic cloud growth: towards a robust estimate of mass flux, mass loading and eruption duration , 2020, Natural Hazards.

[11]  C. Bonadonna,et al.  Aeolian Remobilisation of the 2011-Cordón Caulle Tephra-Fallout Deposit: Example of an Important Process in the Life Cycle of Volcanic Ash , 2020, Frontiers in Earth Science.

[12]  J. Ruiz,et al.  Volcanic ash forecast using ensemble-based data assimilation: an ensemble transform Kalman filter coupled with the FALL3D-7.2 model (ETKF–FALL3D version 1.0) , 2020 .

[13]  M. Pavolonis,et al.  Globally detected volcanic lightning and umbrella dynamics during the 2014 eruption of Kelud, Indonesia , 2019, Journal of Volcanology and Geothermal Research.

[14]  T. Wilson,et al.  Timber-framed building damage from tephra fall and lahar: 2015 Calbuco eruption, Chile , 2019, Journal of Volcanology and Geothermal Research.

[15]  Jack W. Baker,et al.  Spatial and Spectral Interpolation of Ground-Motion Intensity Measure Observations , 2018 .

[16]  Takahiro Miwa,et al.  Distribution and mass of tephra-fall deposits from volcanic eruptions of Sakurajima Volcano based on posteruption surveys , 2018, Bulletin of Volcanology.

[17]  S. Cronin,et al.  Insights into eruption dynamics from the 2014 pyroclastic deposits of Kelut volcano, Java, Indonesia, and implications for future hazards , 2018, Journal of Volcanology and Geothermal Research.

[18]  S. Morley,et al.  Measures of Model Performance Based On the Log Accuracy Ratio , 2018 .

[19]  C. Bonadonna,et al.  Potential impacts of tephra fallout from a large-scale explosive eruption at Sakurajima volcano, Japan , 2017, Bulletin of Volcanology.

[20]  M. Iguchi,et al.  Determination of the mass eruption rate for the 2014 Mount Kelud eruption using three-dimensional numerical simulations of volcanic plumes , 2017, Journal of Volcanology and Geothermal Research.

[21]  R. Blong,et al.  Preservation of thin tephra , 2017, Journal of Applied Volcanology.

[22]  J. Garibaldi,et al.  A new accuracy measure based on bounded relative error for time series forecasting , 2017, PloS one.

[23]  M. Yoshimoto,et al.  A sequence of a plinian eruption preceded by dome destruction at Kelud volcano, Indonesia, on February 13, 2014, revealed from tephra fallout and pyroclastic density current deposits , 2017, Journal of Volcanology and Geothermal Research.

[24]  T. Wilson,et al.  Quantifying risk to agriculture from volcanic ashfall: a case study from the Bay of Plenty, New Zealand , 2017, Natural Hazards.

[25]  C. Connor,et al.  Efficient inversion and uncertainty quantification of a tephra fallout model , 2017 .

[26]  Heeyoung Kim,et al.  A new metric of absolute percentage error for intermittent demand forecasts , 2016 .

[27]  Hiroshi L. Tanaka,et al.  Numerical Simulations of Volcanic Ash Plume Dispersal from Kelud Volcano in Indonesia on February 13, 2014 , 2016 .

[28]  A. Harijoko,et al.  DISTRIBUSI AREA, VOLUME, SERTA KARAKTERISTIK MINERALOGI DAN GEOKIMIA ENDAPAN TEFRA JATUHAN DARI ERUPSI GUNUNG KELUD TAHUN 2014 , 2015 .

[29]  Pierrick Mialle,et al.  On the use of remote infrasound and seismic stations to constrain the eruptive sequence and intensity for the 2014 Kelud eruption , 2015 .

[30]  C. Bonadonna,et al.  Physical characterization of explosive volcanic eruptions based on tephra deposits: Propagation of uncertainties and sensitivity analysis , 2015 .

[31]  S. Carn,et al.  Stratospheric volcanic ash emissions from the 13 February 2014 Kelut eruption , 2015 .

[32]  Georg Stadler,et al.  Scalable and efficient algorithms for the propagation of uncertainty from data through inference to prediction for large-scale problems, with application to flow of the Antarctic ice sheet , 2014, J. Comput. Phys..

[33]  David J. Wald,et al.  A VS30 Map for California with Geologic and Topographic Constraints , 2014 .

[34]  K. Mannen Particle segregation of an eruption plume as revealed by a comprehensive analysis of tephra dispersal: Theory and application , 2014 .

[35]  Puneet Singla,et al.  Computation of probabilistic hazard maps and source parameter estimation for volcanic ash transport and dispersion , 2014, J. Comput. Phys..

[36]  Chris Tofallis,et al.  A better measure of relative prediction accuracy for model selection and model estimation , 2014, J. Oper. Res. Soc..

[37]  R. Sparks,et al.  Quantifying uncertainties in the measurement of tephra fall thickness , 2013, Journal of Applied Volcanology.

[38]  T. Wilson,et al.  Observations of tephra fall impacts from the 2011 Shinmoedake eruption, Japan , 2013, Earth, Planets and Space.

[39]  M. Pavolonis,et al.  Estimation of eruption source parameters from umbrella cloud or downwind plume growth rate , 2013 .

[40]  Costanza Bonadonna,et al.  Modeling Volcanic Processes: Modeling tephra sedimentation from volcanic plumes , 2013 .

[41]  Ó. Arnalds,et al.  An extreme wind erosion event of the fresh Eyjafjallajökull 2010 volcanic ash , 2013, Scientific Reports.

[42]  P. Bodger,et al.  Potential impacts from tephra fall to electric power systems: a review and mitigation strategies , 2012, Bulletin of Volcanology.

[43]  Paul Ayris,et al.  The immediate environmental effects of tephra emission , 2012, Bulletin of Volcanology.

[44]  G. Macedonio,et al.  Quantifying volcanic ash dispersal and impact of the Campanian Ignimbrite super‐eruption , 2012 .

[45]  P. Mothes,et al.  Impact of tephra falls on Andean communities: The influences of eruption size and weather conditions during the 1999-2001 activity of Tungurahua volcano, Ecuador , 2012 .

[46]  G. Ernst,et al.  The Rungwe Volcanic Province, Tanzania: a volcanological review , 2012 .

[47]  Kerstin Stebel,et al.  Determination of time- and height-resolved volcanic ash emissions and their use for quantitative ash dispersion modeling: the 2010 Eyjafjallajökull eruption , 2011 .

[48]  J. Thepaut,et al.  The ERA‐Interim reanalysis: configuration and performance of the data assimilation system , 2011 .

[49]  T. Wilson,et al.  Ash storms: impacts of wind-remobilised volcanic ash on rural communities and agriculture following the 1991 Hudson eruption, southern Patagonia, Chile , 2011 .

[50]  Charles B. Connor,et al.  Modeling tephra dispersal in absence of wind: Insights from the climactic phase of the 2450 BP Plinian eruption of Pululagua volcano (Ecuador) , 2010 .

[51]  Larry G. Mastin,et al.  A multidisciplinary effort to assign realistic source parameters to models of volcanic ash-cloud transport and dispersion during eruptions , 2009 .

[52]  Arnau Folch,et al.  FALL3D: A computational model for transport and deposition of volcanic ash , 2009, Comput. Geosci..

[53]  Bruce Denby,et al.  Comparison of two data assimilation methods for assessing PM10 exceedances on the European scale , 2008 .

[54]  Arnau Folch,et al.  A parametric and comparative study of different tephra fallout models , 2008 .

[55]  Georgios Ch. Sirakoulis,et al.  A cellular automaton simulation tool for modelling seismicity in the region of Xanthi , 2007, Environ. Model. Softw..

[56]  A. Stein,et al.  Statistical mapping of PM10 concentrations over Western Europe using secondary information from dispersion modeling and MODIS satellite observations , 2006 .

[57]  Joslin L. Moore,et al.  The concepts of bias, precision and accuracy, and their use in testing the performance of species richness estimators, with a literature review of estimator performance , 2005 .

[58]  Arlene Laing,et al.  Probabilistic modeling of tephra dispersal: Hazard assessment of a multiphase rhyolitic eruption at Tarawera, New Zealand , 2005 .

[59]  J. Scott Armstrong,et al.  On the Selection of Error Measures for Comparisons Among Forecasting Methods , 2005 .

[60]  S. Uhlenbrook,et al.  Hydrological process representation at the meso-scale: the potential of a distributed, conceptual catchment model , 2004 .

[61]  Nadège Blond,et al.  Three-dimensional ozone data analysis with an air quality model over the Paris area , 2003 .

[62]  D. Montgomery,et al.  Fluvial sediment transport and deposition following the 1991 eruption of Mount Pinatubo , 2002 .

[63]  Richard Turner,et al.  Performance of the program ASHFALL for forecasting ashfall during the 1995 and 1996 eruptions of Ruapehu volcano , 1999 .

[64]  R. Engle On the limitations of comṕaring mean square forecast errors: Comment , 1993 .

[65]  Spyros Makridakis,et al.  Accuracy measures: theoretical and practical concerns☆ , 1993 .

[66]  Paul D. Cole,et al.  The Neapolitan Yellow Tuff — A large volume multiphase eruption from Campi Flegrei, Southern Italy , 1993 .

[67]  J. Shao Linear Model Selection by Cross-validation , 1993 .

[68]  M. T. Pareschi,et al.  A numerical model for simulation of tephra transport and deposition: Applications to May 18, 1980, Mount St. Helens eruption , 1988 .

[69]  S. Baloga,et al.  Eruption rate, area, and length relationships for some Hawaiian lava flows , 1986 .

[70]  R. Sparks,et al.  Quantitative models of the fallout and dispersal of tephra from volcanic eruption columns , 1986 .

[71]  S. Self,et al.  The volcanic explosivity index (VEI) an estimate of explosive magnitude for historical volcanism , 1982 .

[72]  G. Walker,et al.  Characteristics of some basaltic pyroclastics , 1971 .

[73]  C. Bonadonna,et al.  Modelling Tephra Thickness and Particle Size Distribution of the 1913 Eruption of Volcán de Colima, Mexico , 2019, Volcán de Colima.

[74]  D. Pyle Field Observations of Tephra Fallout Deposits , 2016 .

[75]  R. Wunderman Report on Kelut (Indonesia) , 2008 .

[76]  C. Connor,et al.  Inversion Is the Key to Dispersion: Understanding Eruption Dynamics by Inverting Tephra Fallout , 2006 .

[77]  R. Lindig-Cisneros,et al.  Effect of tephra depth on vegetation development in areas affected by volcanism , 2005, Plant Ecology.

[78]  H. Wackernagel Linear Regression and Simple Kriging , 2003 .

[79]  D. Pyle The thickness, volume and grainsize of tephra fall deposits , 1989 .

[80]  under a Creative Commons License. Natural Hazards and Earth System Sciences Residential building and occupant vulnerability to tephra fall , 2022 .