Carbon paste electrode modified with a binuclear manganese complex as a sensitive voltammetric sensor for tryptophan

[1]  Haoqing Hou,et al.  Electrochemical determination of L-Tryptophan, L-Tyrosine and L-Cysteine using electrospun carbon nanofibers modified electrode. , 2010, Talanta.

[2]  Chunya Li,et al.  Electrochemical investigation of tryptophan at gold nanoparticles modified electrode in the presence of sodium dodecylbenzene sulfonate. , 2010, Colloids and surfaces. B, Biointerfaces.

[3]  P. Lan-gan,et al.  More rapid and sensitive method for simultaneous determination of tryptophan and kynurenic acid by HPLC. , 2009 .

[4]  M. Zendehdel,et al.  Simultaneous determination of tryptophan, uric acid and ascorbic acid at iron(III) doped zeolite modified carbon paste electrode. , 2008, Colloids and surfaces. B, Biointerfaces.

[5]  F. D’Souza,et al.  Decomposition of dinuclear manganese complexes for the preparation of nanostructured oxide materials. , 2008, Inorganic chemistry.

[6]  T. Shibata,et al.  Simultaneous measurement of tryptophan and related compounds by liquid chromatography/electrospray ionization tandem mass spectrometry. , 2008, Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.

[7]  Wei,et al.  Hydrothermal Synthesis and Crystal Structure of Complex Mn2(phen)2(p-MBA)4(H2O) , 2008 .

[8]  Guangfeng Wang,et al.  Study on electrochemical behavior of tryptophan at a glassy carbon electrode modified with multi-walled carbon nanotubes embedded cerium hexacyanoferrate. , 2007, Talanta.

[9]  Leila Fotouhi,et al.  Carbon paste electrode incorporating multi-walled carbon nanotube/cobalt salophen for sensitive voltammetric determination of tryptophan , 2007 .

[10]  D. Christianson,et al.  Crystal structure of human arginase I complexed with thiosemicarbazide reveals an unusual thiocarbonyl mu-sulfide ligand in the binuclear manganese cluster. , 2007, Journal of the American Chemical Society.

[11]  G. B. Shul’pin,et al.  Dinuclear manganese complexes containing chiral 1,4,7-triazacyclononane-derived ligands and their catalytic potential for the oxidation of olefins, alkanes, and alcohols. , 2007, Inorganic chemistry.

[12]  A. Ensafi,et al.  Determination of tryptophan and histidine by adsorptive cathodic stripping voltammetry using H-point standard addition method. , 2006, Analytica chimica acta.

[13]  A. J. Blake,et al.  Syntheses and structures of dinuclear double-stranded helicates of divalent manganese, iron, cobalt, and zinc. , 2006, Inorganic chemistry.

[14]  D. Zhao,et al.  Synthesis and characterization of a new 3D manganese (II) coordination polymer [Mn2(NDC)2(DMF)2(H2O)] n·nDMF (NDC = 2,6-naphthalenedicarboxylate) , 2004 .

[15]  Guang-Chao Zhao,et al.  Electrocatalysis of Tryptophan at Multi-Walled Carbon Nanotube Modified Electrode , 2004 .

[16]  W. Underberg,et al.  Derivatization trends in capillary electrophoresis: An update , 2002, Electrophoresis.

[17]  Zhao Feng,et al.  Electrochemical behavior of tryptophan and its derivatives at a glassy carbon electrode modified with hemin , 2002 .

[18]  L. Jun Synthesis and Characterization of Mixed-valent Binuclear Manganese Complex [(Phen)_2Mn(μ-O)_2Mn(Phen)_2](ClO_4)_3·CH_2ClCOOH·2H_2O , 2002 .

[19]  M. Smyth,et al.  Determination of tryptophan and kynurenine in brain microdialysis samples by capillary electrophoresis with electrochemical detection , 1995 .