Asset Liability Management in Financial Planning

The authors study several models that manage, in an integrated fashion, the asset and liability needs of an individual investor. The models are tested using the typical assets of household portfolios, including real estate in the case of both stochastic and deterministic liabilities. The majority of the investment models suggest that one should invest heavily in real estate, which conforms to the empirical research on the composition of household portfolios. The performance results indicate that the models perform better for stochastic liabilities due to the fact that assets and liabilities share common risk factors.

[1]  R. Rockafellar,et al.  Conditional Value-at-Risk for General Loss Distributions , 2001 .

[2]  Martin L. Leibowitz,et al.  Asset allocation under shortfall constraints , 1991 .

[3]  Bernd Scherer,et al.  Introduction to modern portfolio optimization with NUOPT and S-PLUS , 2005 .

[4]  A. Roy Safety first and the holding of assetts , 1952 .

[5]  Using Scenario Analysis for Risk Management , 2002 .

[6]  L. Telser Safety First and Hedging , 1955 .

[7]  L LeibowitzMartin,et al.  Portfolio Optimization with Shortfall Constraints: A Confidence-Limit Approach to Managing Downside Risk , 1989 .

[8]  N. C. P. Edirisinghe,et al.  Multiperiod Portfolio Optimization with Terminal Liability: Bounds for the Convex Case , 2005, Comput. Optim. Appl..

[9]  Martin L. Leibowitz,et al.  Return Targets and Shortfall Risks: Studies in Strategic Asset Allocation , 1996 .

[10]  Maarten H. van der Vlerk,et al.  Asset liability management modeling using multi-stage mixed-integer stochastic programming , 2000 .

[11]  Stanislav Uryasev,et al.  Conditional Value-at-Risk for General Loss Distributions , 2002 .

[12]  Nicolo G. Torre,et al.  The Portfolio Management Problem of Individual Investors , 2004 .

[13]  Rudi Zagst Interest-Rate Management , 2002 .

[14]  M. Kenward,et al.  An Introduction to the Bootstrap , 2007 .

[15]  Maria Grazia Speranza,et al.  Conditional value at risk and related linear programming models for portfolio optimization , 2007, Ann. Oper. Res..

[16]  Rudi Zagst,et al.  Portfolio Optimization: Volatility versus Shortfall Constraints , 1999 .

[17]  Dieter Kalin,et al.  Portfolio optimization: volatility constraints versus shortfall constraints , 1999 .

[18]  J. Hull Options, Futures, and Other Derivatives , 1989 .

[19]  William B. Riley,et al.  Asset Allocation and Individual Risk Aversion , 1992 .

[20]  G. Pflug Some Remarks on the Value-at-Risk and the Conditional Value-at-Risk , 2000 .

[21]  J. Mulvey,et al.  Stochastic network programming for financial planning problems , 1992 .

[22]  Phhilippe Jorion Value at Risk: The New Benchmark for Managing Financial Risk , 2000 .

[23]  Wlodzimierz Ogryczak,et al.  Multiple criteria linear programming model for portfolio selection , 2000, Ann. Oper. Res..

[24]  Philippe Artzner,et al.  Coherent Measures of Risk , 1999 .

[25]  R. Rockafellar,et al.  Optimization of conditional value-at risk , 2000 .

[26]  Oldrich A. Vasicek An equilibrium characterization of the term structure , 1977 .

[27]  Stavros A. Zenios,et al.  Scenario optimization asset and liability modelling for individual investors , 2007, Ann. Oper. Res..

[28]  Philippe Jorion,et al.  GLOBAL STOCK MARKETS IN THE TWENTIETH CENTURY , 1999 .

[29]  K. Spremann,et al.  Humankapital im Portefeuille privater Investoren , 1997 .