An artificial immune network for multiobjective optimization problems

Multiobjective optimization is an important problem of great complexity and evolutionary algorithms have been established as a dominant approach in the field. This article suggests a method for approximating the Pareto front of a given function based on artificial immune networks. The proposed method uses cloning and mutation on a population of antibodies to create local subsets of the Pareto front. Elements of these local fronts are combined, in a way that maximizes diversity, to form the complete Pareto front of the function. The method is tested on a number of well-known benchmark problems, as well as an engineering problem. Its performance is compared against state-of-the-art algorithms, yielding promising results.

[1]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[2]  Fabio Freschi,et al.  Multiobjective Optimization and Artificial Immune Systems: A Review , 2009 .

[3]  Maoguo Gong,et al.  Multiobjective Immune Algorithm with Nondominated Neighbor-Based Selection , 2008, Evolutionary Computation.

[4]  M. Ehrgott Multiobjective Optimization , 2008, AI Mag..

[5]  Marco Laumanns,et al.  SPEA2: Improving the strength pareto evolutionary algorithm , 2001 .

[6]  Jerne Nk Towards a network theory of the immune system. , 1974 .

[7]  N K Jerne,et al.  Towards a network theory of the immune system. , 1973, Annales d'immunologie.

[8]  Nicola Beume,et al.  SMS-EMOA: Multiobjective selection based on dominated hypervolume , 2007, Eur. J. Oper. Res..

[9]  Andreas Stafylopatis,et al.  An Artificial Immune Network for Multi-objective Optimization , 2010, ICANN.

[10]  Enrique Alba,et al.  MOCell: A cellular genetic algorithm for multiobjective optimization , 2009, Int. J. Intell. Syst..

[11]  Eckart Zitzler,et al.  Evolutionary algorithms for multiobjective optimization: methods and applications , 1999 .

[12]  Marco Laumanns,et al.  Scalable Test Problems for Evolutionary Multiobjective Optimization , 2005, Evolutionary Multiobjective Optimization.

[13]  Marco Laumanns,et al.  Multiobjective Groundwater Management Using Evolutionary Algorithms , 2009, IEEE Transactions on Evolutionary Computation.

[14]  Zhen Ji,et al.  A hybrid immune multiobjective optimization algorithm , 2010, Eur. J. Oper. Res..

[15]  Qingfu Zhang,et al.  Multiobjective evolutionary algorithms: A survey of the state of the art , 2011, Swarm Evol. Comput..

[16]  Qingfu Zhang,et al.  MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition , 2007, IEEE Transactions on Evolutionary Computation.

[17]  Lothar Thiele,et al.  The Hypervolume Indicator Revisited: On the Design of Pareto-compliant Indicators Via Weighted Integration , 2007, EMO.

[18]  David W. Corne,et al.  Properties of an adaptive archiving algorithm for storing nondominated vectors , 2003, IEEE Trans. Evol. Comput..

[19]  Zhi-Hua Hu,et al.  A multiobjective immune algorithm based on a multiple-affinity model , 2010, Eur. J. Oper. Res..

[20]  Carlos A. Coello Coello,et al.  A Study of Multiobjective Metaheuristics When Solving Parameter Scalable Problems , 2010, IEEE Transactions on Evolutionary Computation.

[21]  Kalyanmoy Deb,et al.  Multiobjective optimization , 1997 .

[22]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[23]  Lothar Thiele,et al.  Comparison of Multiobjective Evolutionary Algorithms: Empirical Results , 2000, Evolutionary Computation.

[24]  Enrique Alba,et al.  Convergence speed in multi‐objective metaheuristics: Efficiency criteria and empirical study , 2010 .

[25]  Fernando José Von Zuben,et al.  Learning and optimization using the clonal selection principle , 2002, IEEE Trans. Evol. Comput..

[26]  Enrique Alba,et al.  The jMetal framework for multi-objective optimization: Design and architecture , 2010, IEEE Congress on Evolutionary Computation.

[27]  Zhen Ji,et al.  Chaos-based multi-objective immune algorithm with a fine-grained selection mechanism , 2011, Soft Comput..

[28]  Frederico G. Guimarães,et al.  Overview of Artificial Immune Systems for Multi-objective Optimization , 2007, EMO.

[29]  H. Abbass,et al.  aiNet : An Artificial Immune Network for Data Analysis , 2022 .

[30]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1996, Springer Berlin Heidelberg.

[31]  M. Giles,et al.  Viscous-inviscid analysis of transonic and low Reynolds number airfoils , 1986 .

[32]  Qingfu Zhang,et al.  Multiobjective Optimization Problems With Complicated Pareto Sets, MOEA/D and NSGA-II , 2009, IEEE Transactions on Evolutionary Computation.

[33]  Brani Vidakovic,et al.  Nonparametric Statistics with Applications to Science and Engineering (Wiley Series in Probability and Statistics) , 2007 .

[34]  Stefan Roth,et al.  Covariance Matrix Adaptation for Multi-objective Optimization , 2007, Evolutionary Computation.

[35]  I. Loshchilov,et al.  A Comparison of Multiobjective Evolutionary Algorithms , 2009 .

[36]  Enrique Alba,et al.  AbYSS: Adapting Scatter Search to Multiobjective Optimization , 2008, IEEE Transactions on Evolutionary Computation.