Broadening of the superconducting transition by fluctuations in three-dimensional metals at high magnetic fields

The Bragg-chain model of the two-dimensional (2D) vortex state at high magnetic field [V. N. Zhuravlev and T. Maniv, Phys. Rev. B 60, 4277 (1999)] is extended to an array of coupled superconducting (SC) layers. Application to ${\mathrm{MgB}}_{2}$ and ${\mathrm{YNi}}_{2}{\mathrm{B}}_{2}\mathrm{C}$ yields good quantitative agreement with high-field magnetization measurements, indicating that the smeared transitions observed in these materials are, at least in great part, due to SC fluctuations. Similar to the situation in a 2D system, the melting of the vortex lattice in strongly coupled SC layers is predicted to occur well below the mean field ${H}_{c2}$.

[1]  J. Wosnitza,et al.  Magnetic quantum oscillations in the normal state of YNi2B2C , 2005 .

[2]  T. Isshiki,et al.  dHvA effect and superconductivity of MgB2 detected by AC torque method down to the fields below Hc2 , 2005 .

[3]  J. Karpinski,et al.  Damping of the de Haas-van Alphen oscillations in the superconducting state of MgB2 , 2004, cond-mat/0405120.

[4]  B. Rosenstein,et al.  Supercooled vortex liquid and quantitative theory of melting of the flux-line lattice in type-II superconductors , 2003, cond-mat/0305256.

[5]  D. Bintley,et al.  Measurement of an anisotropic superconducting gap parameter resolved to a single Fermi surface sheet: YNi2B2C , 2003 .

[6]  P. Canfield,et al.  Phonon-mediated anisotropic superconductivity in the Y and Lu nickel borocarbides , 2002, cond-mat/0209469.

[7]  T. Sasaki,et al.  Shubnikov–de Haas effect in the quantum vortex liquid state of the organic superconductor κ − ( BEDT − TTF ) 2 Cu ( NCS ) 2 , 2002, cond-mat/0203228.

[8]  T. Maniv,et al.  Landau orbital description of the vortex state in a two-dimensional extremely type-II superconductor , 2002 .

[9]  P. Wyder,et al.  Superconducting fluctuation effect on the de Haas–van Alphen oscillations in the vortex liquid state of quasi-2D superconductors , 2002 .

[10]  P. Wyder,et al.  Vortex states and quantum magnetic oscillations in conventional type-II superconductors , 2001 .

[11]  B. Rosenstein,et al.  Thermal fluctuation correction to magnetization and specific heat of vortex solids in type-II superconductors , 2001, cond-mat/0107168.

[12]  D. Li,et al.  Precision calculation of magnetization and specific heat of vortex liquids and solids in type-II superconductors. , 2001, Physical review letters.

[13]  M. Marchevsky,et al.  Two coexisting vortex phases in the peak effect regime in a superconductor , 2001, Nature.

[14]  B. Rosenstein,et al.  Optimized perturbation theory in the vortex liquid of type-II superconductors , 2000, cond-mat/0009204.

[15]  Watanabe,et al.  Ultrahigh-resolution photoemission spectroscopy of Ni borocarbides: direct observation of the superconducting gap and a change in gap anisotropy by impurity , 2000, Physical review letters.

[16]  Hirata,et al.  Imaging of a vortex lattice transition in YNi2B2C by scanning tunneling spectroscopy , 2000, Physical review letters.

[17]  S. Hayden,et al.  The Angular Dependence of the Superconductivity Fluctuation Effects near the Upper Critical Field Observed Through Damping of the de Haas–van Alphen Oscillation of κ-(BEDT-TTF)2Cu(NCS)2 , 1999 .

[18]  T. Maniv,et al.  Simple analytical model of vortex-lattice melting in two-dimensional superconductors , 1999 .

[19]  D. Bishop,et al.  New Magnetic Superconductors: A Toy Box for Solid‐State Physicists , 1998 .

[20]  H. Takeya,et al.  Small superconducting gap on part of the Fermi surface of YNi2B2C from the de Haas–van Alphen effect , 1997 .

[21]  K. Winzer,et al.  Magnetoquantum oscillations in the normal and superconducting state of YNi2B2C , 1997 .

[22]  Jansen,et al.  de Haas-van Alphen study in the superconducting state of YNi2B2C. , 1996, Physical review. B, Condensed matter.

[23]  Fujii,et al.  Tunneling spectroscopy of the superconducting energy gap in RNi2B2C (R=Y and Lu). , 1996, Physical review. B, Condensed matter.

[24]  H. Takeya,et al.  De Hass - van Alphen oscillations in the normal and superconducting states of the boro-carbide superconductor YNi2B2C , 1995 .

[25]  Andreev,et al.  Thermodynamic scaling functions in the critical region of type-II superconductors. , 1994, Physical review. B, Condensed matter.

[26]  N. Nagaosa,et al.  Monte Carlo simulation of two-dimensional flux-line-lattice melting. , 1993, Physical review. B, Condensed matter.

[27]  Moore,et al.  Comparison of experimental magnetization and specific-heat data with Landau-Ginzburg theory results for high-temperature superconductors near Hc2. , 1993, Physical review. B, Condensed matter.

[28]  Moore,et al.  Analysis of the perturbation series for the specific heat of a thin-film superconductor near Hc2. , 1993, Physical review. B, Condensed matter.

[29]  Bulaevskii,et al.  Critical fluctuations in the thermodynamics of quasi-two-dimensional type-II supeconductors. , 1992, Physical review letters.

[30]  White,et al.  Specific heat of a superconducting multilayer: 2D fluctuations and 2D-0D crossover. , 1992, Physical review letters.

[31]  Larkin,et al.  Magnetic-flux-lattice melting in a strong magnetic field. , 1991, Physical review. B, Condensed matter.

[32]  Maley,et al.  Field-induced suppression of the phase transition in Bi2Sr2CaCu2O8. , 1991, Physical review letters.

[33]  Fujita,et al.  Large-order behavior of the perturbation series for superconductors near Hc2. , 1990, Physical review letters.

[34]  D. Stroud,et al.  Monte Carlo solution for a lattice of coupled superconducting grains , 1981 .

[35]  D. Thouless,et al.  Perturbation series for the critical behaviour of type II superconductors near Hc2 , 1976 .

[36]  R. A. Ferrell,et al.  Statistical mechanics of one-dimensional Ginzburg--Landau fields , 1972 .

[37]  S. R. Shenoy,et al.  Effective dimensionality change of fluctuations in superconductors in a magnetic field , 1972 .