THE EVOLUTION OF INTERSTELLAR MEDIUM MASS PROBED BY DUST EMISSION: ALMA OBSERVATIONS AT z = 0.3–2

The use of submillimeter dust continuum emission to probe the mass of interstellar dust and gas in galaxies is empirically calibrated using samples of local star-forming galaxies, Planck observations of the Milky Way, and high-redshift submillimeter galaxies. All of these objects suggest a similar calibration, strongly supporting the view that the Rayleigh–Jeans tail of the dust emission can be used as an accurate and very fast probe of the interstellar medium (ISM) in galaxies. We present ALMA Cycle 0 observations of the Band 7 (350 GHz) dust emission in 107 galaxies from z = 0.2 to 2.5. Three samples of galaxies with a total of 101 galaxies were stellar-mass-selected from COSMOS to have M* ≃ 1011 M☉: 37 at z ∼ 0.4, 33 at z ∼ 0.9, and 31 at z = 2. A fourth sample with six infrared-luminous galaxies at z = 2 was observed for comparison with the purely mass-selected samples. From the fluxes detected in the stacked images for each sample, we find that the ISM content has decreased by a factor ∼6 from 1 to 2 × 1010 M☉ at both z = 2 and 0.9 down to ∼2 × 109 M☉ at z = 0.4. The infrared-luminous sample at z = 2 shows a further ∼4 times increase in MISM compared with the equivalent non-infrared-bright sample at the same redshift. The gas mass fractions are ∼2% ± 0.5%, 12% ± 3%, 14% ± 2%, and 53% ± 3% for the four subsamples (z = 0.4, 0.9, and 2 and infrared-bright galaxies).

[1]  P. P. van der Werf,et al.  GRAVITATIONAL LENS MODELS BASED ON SUBMILLIMETER ARRAY IMAGING OF HERSCHEL-SELECTED STRONGLY LENSED SUB-MILLIMETER GALAXIES AT z > 1.5 , 2013, 1309.0836.

[2]  B. Altieri,et al.  The rapid assembly of an elliptical galaxy of 400 billion solar masses at a redshift of 2.3 , 2013, Nature.

[3]  B. Benson,et al.  Large gas reservoirs and free–free emission in two lensed star-forming galaxies at z = 2.7 , 2013, 1305.0614.

[4]  Qi Guo,et al.  EVOLUTION OF GALAXIES AND THEIR ENVIRONMENTS AT z = 0.1–3 IN COSMOS , 2013, 1303.6689.

[5]  D. L. Clements,et al.  HERSCHEL-ATLAS: A BINARY HyLIRG PINPOINTING A CLUSTER OF STARBURSTING PROTOELLIPTICALS , 2013, 1302.4436.

[6]  Y. Mellier,et al.  Mass assembly in quiescent and star-forming galaxies since z ≃ 4 from UltraVISTA , 2013, 1301.3157.

[7]  F. Walter,et al.  Cool Gas in High-Redshift Galaxies , 2013, 1301.0371.

[8]  G. J. Bendo,et al.  The Herschel Virgo Cluster Survey - XII. FIR properties of optically selected Virgo cluster galaxies , 2012, 1209.4651.

[9]  A. M. Swinbank,et al.  A survey of molecular gas in luminous sub-millimetre galaxies , 2012, 1205.1511.

[10]  B. Weiner,et al.  PHIBSS: MOLECULAR GAS CONTENT AND SCALING RELATIONS IN z ∼ 1–3 MASSIVE, MAIN-SEQUENCE STAR-FORMING GALAXIES , 2012, 1211.5743.

[11]  N. Scoville Evolution of star formation and gas , 2012, 1210.6990.

[12]  D. Elbaz,et al.  THE EVOLVING INTERSTELLAR MEDIUM OF STAR-FORMING GALAXIES SINCE z = 2 AS PROBED BY THEIR INFRARED SPECTRAL ENERGY DISTRIBUTIONS , 2012, 1210.1035.

[13]  J. Kneib,et al.  VLA imaging of 12CO J = 1-0 and free-free emission in lensed submillimetre galaxies , 2012, 1207.0492.

[14]  P. P. van der Werf,et al.  BLIND DETECTIONS OF CO J = 1–0 IN 11 H-ATLAS GALAXIES AT z = 2.1–3.5 WITH THE GBT/ZPECTROMETER , 2012, 1204.4706.

[15]  Christine D. Wilson,et al.  Can dust emission be used to map the interstellar medium in high-redshift galaxies? Results from the Herschel Reference Survey , 2012, 1202.0547.

[16]  D. Clements,et al.  CAN DUST EMISSION BE USED TO ESTIMATE THE MASS OF THE INTERSTELLAR MEDIUM IN GALAXIES—A PILOT PROJECT WITH THE HERSCHEL REFERENCE SURVEY , 2012 .

[17]  B. Groves,et al.  HERSCHEL FAR-INFRARED AND SUBMILLIMETER PHOTOMETRY FOR THE KINGFISH SAMPLE OF NEARBY GALAXIES , 2011, 1112.1093.

[18]  J. Kneib,et al.  A MOLECULAR EINSTEIN RING TOWARD THE z = 3.93 SUBMILLIMETER GALAXY MM18423+5938 , 2011, 1106.1432.

[19]  F. Walter,et al.  EXTENDED COLD MOLECULAR GAS RESERVOIRS IN z ≃ 3.4 SUBMILLIMETER GALAXIES , 2011, 1105.4177.

[20]  M. Sauvage,et al.  Probing the dust properties of galaxies up to submillimetre wavelengths. II. Dust-to-gas mass ratio trends with metallicity and the submm excess in dwarf galaxies , 2011, 1104.0827.

[21]  R. B. Barreiro,et al.  Planck early results. XXI. Properties of the interstellar mediumin the Galactic plane , 2011, 1101.2032.

[22]  P. A. R. Ade,et al.  Planckearly results. XXV. Thermal dust in nearby molecular clouds , 2011, Astronomy & Astrophysics.

[23]  S. Maddox,et al.  Herschel-ATLAS: rapid evolution of dust in galaxies over the last 5 billion years , 2010, 1012.5186.

[24]  R. J. Ivison,et al.  Tracing the molecular gas in distant submillimetre galaxies via CO(1-0) imaging with the EVLA , 2010, 1009.0749.

[25]  National Radio Astronomy Observatory,et al.  CO J = 1–0 SPECTROSCOPY OF FOUR SUBMILLIMETER GALAXIES WITH THE ZPECTROMETER ON THE GREEN BANK TELESCOPE , 2010, 1006.3691.

[26]  M. C. Cooper,et al.  High molecular gas fractions in normal massive star-forming galaxies in the young Universe , 2010, Nature.

[27]  D. Clements,et al.  The submillimetre properties of ultraluminous infrared galaxies , 2009, 0911.3593.

[28]  M. Halpern,et al.  An AzTEC 1.1 mm survey of the GOODS‐N field – II. Multiwavelength identifications and redshift distribution , 2009, 0906.4561.

[29]  NOAO,et al.  A submillimetre galaxy at z = 4.76 in the LABOCA survey of the Extended Chandra Deep Field-South , 2009, 0902.4464.

[30]  D. Calzetti,et al.  Dust Masses, PAH Abundances, and Starlight Intensities in the SINGS Galaxy Sample , 2007, astro-ph/0703213.

[31]  B. Draine,et al.  Infrared Emission from Interstellar Dust. IV. The Silicate-Graphite-PAH Model in the Post-Spitzer Era , 2006, astro-ph/0608003.

[32]  L. Guzzo,et al.  The Cosmic Evolution Survey (COSMOS): Overview* , 2006, astro-ph/0612305.

[33]  C. Steidel,et al.  The Mass-Metallicity Relation at z≳2 , 2006, astro-ph/0602473.

[34]  A. Hopkins,et al.  On the Normalization of the Cosmic Star Formation History , 2006, astro-ph/0601463.

[35]  P. Solomon,et al.  Molecular Gas at High Redshift , 2005, astro-ph/0508481.

[36]  L. Kewley,et al.  Infrared Spectral Energy Distributions of Nearby Galaxies , 2005, astro-ph/0507645.

[37]  R. Ivison,et al.  Gas and Dust in the Extremely Red Object ERO J164502+4626.4 , 2003, astro-ph/0309213.

[38]  R. Genzel,et al.  Molecular Gas in the Lensed Lyman Break Galaxy cB58 , 2002, astro-ph/0312099.

[39]  Loretta Dunne,et al.  The SCUBA Local Universe Galaxy Survey – II. 450‐μm data: evidence for cold dust in bright IRAS galaxies , 2001, astro-ph/0106362.

[40]  Simon J. E. Radford,et al.  Molecular gas mass and far-infrared emission from distant luminous galaxies , 1993 .

[41]  A. R. Rivolo,et al.  Mass, luminosity, and line width relations of Galactic molecular clouds , 1987 .

[42]  Dan P Clemens,et al.  Molecular clouds and cloud cores in the inner Galaxy , 1987 .

[43]  G. B. Field,et al.  PHYSICS OF THE INTERSTELLAR AND INTERGALACTIC MEDIUM. , 1969 .