Structure and Dynamics of Interphase Chromosomes

During interphase chromosomes decondense, but fluorescent in situ hybridization experiments reveal the existence of distinct territories occupied by individual chromosomes inside the nuclei of most eukaryotic cells. We use computer simulations to show that the existence and stability of territories is a kinetic effect that can be explained without invoking an underlying nuclear scaffold or protein-mediated interactions between DNA sequences. In particular, we show that the experimentally observed territory shapes and spatial distances between marked chromosome sites for human, Drosophila, and budding yeast chromosomes can be reproduced by a parameter-free minimal model of decondensing chromosomes. Our results suggest that the observed interphase structure and dynamics are due to generic polymer effects: confined Brownian motion conserving the local topological state of long chain molecules and segregation of mutually unentangled chains due to topological constraints.

[1]  J. E. Mazur,et al.  Half a century. , 2008, Journal of the experimental analysis of behavior.

[2]  Thomas Cremer,et al.  Rise, fall and resurrection of chromosome territories: a historical perspective. Part I. The rise of chromosome territories. , 2006, European journal of histochemistry : EJH.

[3]  P. Gennes Reptation of a Polymer Chain in the Presence of Fixed Obstacles , 1971 .

[4]  A S Belmont,et al.  Visualizing chromosome dynamics with GFP. , 2001, Trends in cell biology.

[5]  Abby Dernburg,et al.  Homologous Chromosome Pairing in Drosophila melanogaster Proceeds through Multiple Independent Initiations , 1998, The Journal of cell biology.

[6]  T. C. B. McLeish,et al.  Polymer Physics , 2009, Encyclopedia of Complexity and Systems Science.

[7]  R. Eils,et al.  Three-Dimensional Maps of All Chromosomes in Human Male Fibroblast Nuclei and Prometaphase Rosettes , 2005, PLoS biology.

[8]  J. Sikorav,et al.  Kinetics of chromosome condensation in the presence of topoisomerases: a phantom chain model. , 1994, Biophysical journal.

[9]  G. Fredrickson The theory of polymer dynamics , 1996 .

[10]  Y Ohnuki,et al.  Structure of chromosomes , 1968, Chromosoma.

[11]  G van den Engh,et al.  Estimating genomic distance from DNA sequence location in cell nuclei by a random walk model. , 1992, Science.

[12]  S. Jun,et al.  Entropy-driven spatial organization of highly confined polymers: Lessons for the bacterial chromosome , 2006, Proceedings of the National Academy of Sciences.

[13]  Kurt Kremer,et al.  Rheology and Microscopic Topology of Entangled Polymeric Liquids , 2004, Science.

[14]  G van den Engh,et al.  A random-walk/giant-loop model for interphase chromosomes. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[15]  W. L. Fangman,et al.  Cell cycle phases in the unequal mother/daughter cell cycles of Saccharomyces cerevisiae , 1984, Molecular and cellular biology.

[16]  J. Davies,et al.  Molecular Biology of the Cell , 1983, Bristol Medico-Chirurgical Journal.

[17]  B. Alberts,et al.  Molecular Biology of the Cell 4th edition , 2007 .

[18]  Tom Misteli,et al.  Cell biology: Chromosome territories , 2007, Nature.

[19]  Ralf Everaers,et al.  Viscoelasticity and primitive path analysis of entangled polymer liquids: from F-actin to polyethylene. , 2007, The Journal of chemical physics.

[20]  T. Pederson,et al.  Half a century of "the nuclear matrix". , 2000, Molecular biology of the cell.

[21]  Kremer,et al.  Relaxation of randomly cross-linked polymer melts. , 1991, Physical review letters.

[22]  Kurt Kremer,et al.  Identifying the primitive path mesh in entangled polymer liquids , 2004 .

[23]  Berend Smit,et al.  Understanding molecular simulation: from algorithms to applications , 1996 .

[24]  G. Grest,et al.  Dynamics of entangled linear polymer melts: A molecular‐dynamics simulation , 1990 .

[25]  Florence Hediger,et al.  The function of nuclear architecture: a genetic approach. , 2004, Annual review of genetics.

[26]  A. C. Maggs,et al.  Dynamic scattering from semiflexible polymers , 1993 .

[27]  Benjamin J. Blencowe,et al.  The Nuclear Matrix: Past and Present , 1997 .

[28]  John W Sedat,et al.  Long-range interphase chromosome organization in Drosophila: a study using color barcoded fluorescence in situ hybridization and structural clustering analysis. , 2004, Molecular biology of the cell.

[29]  Steven J. Plimpton,et al.  Equilibration of long chain polymer melts in computer simulations , 2003, cond-mat/0306026.

[30]  Robert Graf,et al.  Heterogeneity in polymer melts from melting of polymer crystals , 2005, Nature materials.

[31]  Dieter W Heermann,et al.  Random loop model for long polymers. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[32]  Juliet A. Ellis,et al.  The spatial organization of human chromosomes within the nuclei of normal and emerin-mutant cells. , 2001, Human molecular genetics.

[33]  Marvin Bishop,et al.  Scaling in two‐dimensional linear and ring polymers , 1986 .

[34]  W. Marshall,et al.  Order and Disorder in the Nucleus , 2002, Current Biology.

[35]  C Cremer,et al.  Radial arrangement of chromosome territories in human cell nuclei: a computer model approach based on gene density indicates a probabilistic global positioning code. , 2004, Biophysical journal.

[36]  R Eils,et al.  Compartmentalization of interphase chromosomes observed in simulation and experiment. , 1999, Journal of molecular biology.

[37]  J. Haber,et al.  Lack of chromosome territoriality in yeast: promiscuous rejoining of broken chromosome ends. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[38]  P. Cook The organization of replication and transcription. , 1999, Science.

[39]  Jean-Christophe Olivo-Marin,et al.  SAGA interacting factors confine sub-diffusion of transcribed genes to the nuclear envelope , 2006, Nature.

[40]  T. Cremer,et al.  Chromosome territories, nuclear architecture and gene regulation in mammalian cells , 2001, Nature Reviews Genetics.

[41]  S. Gasser,et al.  Chromosome Dynamics in the Yeast Interphase Nucleus , 2001, Science.

[42]  Roland Eils,et al.  Global Chromosome Positions Are Transmitted through Mitosis in Mammalian Cells , 2003, Cell.

[43]  Patrick Heun,et al.  Long-range compaction and flexibility of interphase chromatin in budding yeast analyzed by high-resolution imaging techniques. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[44]  Wittmer,et al.  Topological effects in ring polymers. II. Influence Of persistence length , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[45]  T. Cremer,et al.  Chromosome territories. , 2010, Cold Spring Harbor perspectives in biology.

[46]  Christian Münkel,et al.  Chromosome structure predicted by a polymer model , 1998 .

[47]  A. Telser Molecular Biology of the Cell, 4th Edition , 2002 .