The role of the posterior parietal cortex in saccadic error processing

[1]  Jacqueline Gottlieb,et al.  Parietal neurons encode information sampling based on decision uncertainty , 2019, Nature Neuroscience.

[2]  Jacob L Yates,et al.  The Role of the Lateral Intraparietal Area in (the Study of) Decision Making. , 2017, Annual review of neuroscience.

[3]  Haidong D. Lu,et al.  Neuronal representation of saccadic error in macaque posterior parietal cortex (PPC) , 2016, eLife.

[4]  Laurentiu S. Popa,et al.  The Errors of Our Ways: Understanding Error Representations in Cerebellar-Dependent Motor Learning , 2016, The Cerebellum.

[5]  Wilsaan M. Joiner,et al.  Corollary discharge contributes to perceived eye location in monkeys. , 2013, Journal of neurophysiology.

[6]  D. Zee,et al.  Revisiting corrective saccades: Role of visual feedback , 2013, Vision Research.

[7]  D. Pélisson,et al.  Effects of structural and functional cerebellar lesions on sensorimotor adaptation of saccades , 2013, Experimental Brain Research.

[8]  Reinhold Kliegl,et al.  The generation of secondary saccades without postsaccadic visual feedback. , 2013, Journal of vision.

[9]  Aaron L. Wong,et al.  Using prediction errors to drive saccade adaptation: the implicit double-step task , 2012, Experimental Brain Research.

[10]  Stephen G Lisberger,et al.  Role of the Lateral Intraparietal Area in Modulation of the Strength of Sensory-Motor Transmission for Visually Guided Movements , 2012, The Journal of Neuroscience.

[11]  Thérèse Collins,et al.  The relative importance of retinal error and prediction in saccadic adaptation. , 2012, Journal of neurophysiology.

[12]  S. Gauthier,et al.  Executive function deficits in persons with mild cognitive impairment: A study with a Tower of London task , 2012, Journal of clinical and experimental neuropsychology.

[13]  Mark Shelhamer,et al.  Exploring the Fundamental Dynamics of Error-Based Motor Learning Using a Stationary Predictive-Saccade Task , 2011, PloS one.

[14]  Henry Kennedy,et al.  Pathways of Attention: Synaptic Relationships of Frontal Eye Field to V4, Lateral Intraparietal Cortex, and Area 46 in Macaque Monkey , 2011, The Journal of Neuroscience.

[15]  Pierre Morel,et al.  Optimal and Suboptimal Use of Postsaccadic Vision in Sequences of Saccades , 2011, The Journal of Neuroscience.

[16]  Mark Shelhamer,et al.  Sensorimotor adaptation error signals are derived from realistic predictions of movement outcomes. , 2011, Journal of neurophysiology.

[17]  J. Krakauer,et al.  Error correction, sensory prediction, and adaptation in motor control. , 2010, Annual review of neuroscience.

[18]  Wilsaan M. Joiner,et al.  Amplitudes and directions of individual saccades can be adjusted by corollary discharge. , 2010, Journal of vision.

[19]  Yq Liu,et al.  Intention and Attention: Different functional roles for LIPd and LIPv , 2010, Nature Neuroscience.

[20]  M. Shadlen,et al.  Representation of Confidence Associated with a Decision by Neurons in the Parietal Cortex , 2009, Science.

[21]  Jean-René Duhamel,et al.  Optimal Sensorimotor Control in Eye Movement Sequences , 2009, The Journal of Neuroscience.

[22]  D. Pélisson,et al.  Saccade control and eye–hand coordination in optic ataxia , 2008, Neuropsychologia.

[23]  Yoshiko Kojima,et al.  Complex spike activity in the oculomotor vermis of the cerebellum: a vectorial error signal for saccade motor learning? , 2008, Journal of neurophysiology.

[24]  R. Wurtz,et al.  Brain circuits for the internal monitoring of movements. , 2008, Annual review of neuroscience.

[25]  R. V. van Beers Saccadic Eye Movements Minimize the Consequences of Motor Noise , 2008, PloS one.

[26]  R. J. Beers Correction: Saccadic Eye Movements Minimize the Consequences of Motor Noise , 2008 .

[27]  R. J. Beers The Sources of Variability in Saccadic Eye Movements , 2007 .

[28]  Mingsha Zhang,et al.  The proprioceptive representation of eye position in monkey primary somatosensory cortex , 2007, Nature Neuroscience.

[29]  Robert H. Wurtz,et al.  Influence of the thalamus on spatial visual processing in frontal cortex , 2006, Nature.

[30]  Robijanto Soetedjo,et al.  Complex Spike Activity of Purkinje Cells in the Oculomotor Vermis during Behavioral Adaptation of Monkey Saccades , 2006, The Journal of Neuroscience.

[31]  D. Sparks,et al.  Deficits in saccades and fixation during muscimol inactivation of the caudal fastigial nucleus in the rhesus monkey. , 2004, Journal of neurophysiology.

[32]  Etienne Olivier,et al.  A Deficit in Covert Attention after Parietal Cortex Inactivation in the Monkey , 2004, Neuron.

[33]  R. J. van Beers,et al.  The role of execution noise in movement variability. , 2004, Journal of neurophysiology.

[34]  Daniel Guitton,et al.  Superior colliculus encodes distance to target, not saccade amplitude, in multi-step gaze shifts , 2003, Nature Neuroscience.

[35]  P. Thier,et al.  The Role of the Oculomotor Vermis in the Control of Saccadic Eye Movements , 2002, Annals of the New York Academy of Sciences.

[36]  J. Duhamel,et al.  Saccadic Target Selection Deficits after Lateral Intraparietal Area Inactivation in Monkeys , 2002, The Journal of Neuroscience.

[37]  R. Wurtz,et al.  A Pathway in Primate Brain for Internal Monitoring of Movements , 2002, Science.

[38]  K. Hoffmann,et al.  Neural Mechanisms of Saccadic Suppression , 2002, Science.

[39]  S. Ben Hamed,et al.  Ocular fixation and visual activity in the monkey lateral intraparietal area , 2002, Experimental Brain Research.

[40]  Dottie M. Clower,et al.  The Inferior Parietal Lobule Is the Target of Output from the Superior Colliculus, Hippocampus, and Cerebellum , 2001, The Journal of Neuroscience.

[41]  S. Ben Hamed,et al.  Representation of the visual field in the lateral intraparietal area of macaque monkeys: a quantitative receptive field analysis , 2001, Experimental Brain Research.

[42]  R. Andersen,et al.  Inactivation of macaque lateral intraparietal area delays initiation of the second saccade predominantly from contralesional eye positions in a double-saccade task , 2001, Experimental Brain Research.

[43]  Michael L. Platt,et al.  Neural correlates of decision variables in parietal cortex , 1999, Nature.

[44]  R. Andersen,et al.  Effect of reversible inactivation of macaque lateral intraparietal area on visual and memory saccades. , 1999, Journal of neurophysiology.

[45]  K. Rayner Eye movements in reading and information processing: 20 years of research. , 1998, Psychological bulletin.

[46]  M. Goldberg,et al.  The representation of visual salience in monkey parietal cortex , 1998, Nature.

[47]  R. Wurtz,et al.  Monkey posterior parietal cortex neurons antidromically activated from superior colliculus. , 1997, Journal of neurophysiology.

[48]  M. Goldberg,et al.  Visual, presaccadic, and cognitive activation of single neurons in monkey lateral intraparietal area. , 1996, Journal of neurophysiology.

[49]  R. Andersen,et al.  Evidence for the lateral intraparietal area as the parietal eye field , 1992, Current Opinion in Neurobiology.

[50]  J R Duhamel,et al.  The updating of the representation of visual space in parietal cortex by intended eye movements. , 1992, Science.

[51]  R. Andersen,et al.  Saccade-related activity in the lateral intraparietal area. II. Spatial properties. , 1991, Journal of neurophysiology.

[52]  R. Andersen,et al.  Saccade-related activity in the lateral intraparietal area. I. Temporal properties; comparison with area 7a. , 1991, Journal of neurophysiology.

[53]  R. Andersen,et al.  Visual receptive field organization and cortico‐cortical connections of the lateral intraparietal area (area LIP) in the macaque , 1990, The Journal of comparative neurology.

[54]  R. Andersen,et al.  Memory related motor planning activity in posterior parietal cortex of macaque , 1988, Experimental Brain Research.

[55]  W. Wolf,et al.  Corrective saccades: Effect of shifting the saccade goal , 1982, Vision Research.

[56]  B. Richmond,et al.  Implantation of magnetic search coils for measurement of eye position: An improved method , 1980, Vision Research.

[57]  K. Rayner Eye movements in reading and information processing. , 1978, Psychological bulletin.

[58]  W. Becker Do correction saccades depend exclusively on retinal feedback? A note on the possible role of non-retinal feedback , 1976, Vision Research.

[59]  Bruce Bridgeman,et al.  Failure to detect displacement of the visual world during saccadic eye movements , 1975, Vision Research.

[60]  M. Jeannerod,et al.  Corrective saccades: dependence on retinal reafferent signals , 1975, Vision Research.

[61]  R B Daroff,et al.  Corrective movements following refixation saccades: type and control system analysis. , 1972, Vision research.

[62]  D. Whitteridge,et al.  The representation of the visual field on the cerebral cortex in monkeys , 1961, The Journal of physiology.

[63]  A. Fuchs,et al.  Complex spike activity signals the direction and size of dysmetric saccade errors. , 2008, Progress in brain research.

[64]  M. Jeasnerod CORRECTIVE SACCADES : DEPENDENCE ON RETINAL REAFFERENT SIGNALS , 2008 .

[65]  Nao Ninomiya,et al.  The 10th anniversary of journal of visualization , 2007, J. Vis..

[66]  L. M. Optican,et al.  Superior colliculus neurons provide the saccadic motor error signal , 2004, Experimental Brain Research.

[67]  A. Fuchs,et al.  The role of the cerebellum in voluntary eye movements. , 2001, Annual review of neuroscience.

[68]  Lance M. Optican,et al.  Unix-based multiple-process system, for real-time data acquisition and control , 1982 .

[69]  W. Becker The control of eye movements in the saccadic system. , 1972, Bibliotheca ophthalmologica : supplementa ad ophthalmologica.