A simple polymer based electrochemical transistor for micromolar glucose sensing

Abstract A simple and inexpensive glucose sensor with micromolar sensitivity is demonstrated. The sensor utilizes a poly(3,4-ethyelenedioxythiphene) poly(styrene sulfonate) (PEDOT:PSS) based electrochemical transistor in which all the electrodes and the channel were made with the same polymer. The sensor was fabricated in a one step fabrication process using inexpensive and rapid xurography technique and is able to detect glucose concentrations from approximately 1 μM to 10 mM and showed adequate change for glucose levels in the range of human saliva (8–210 μM) without utilizing any external electron mediators.

[1]  M. Yamaguchi,et al.  Noninvasively measuring blood glucose using saliva. , 1998, IEEE engineering in medicine and biology magazine : the quarterly magazine of the Engineering in Medicine & Biology Society.

[2]  K. Varahramyan,et al.  Glucose sensor based on organic thin film transistor using glucose oxidase and conducting polymer , 2008 .

[3]  Yang Yang,et al.  On the mechanism of conductivity enhancement in poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) film through solvent treatment , 2004 .

[4]  George G. Malliaras,et al.  All-Plastic Electrochemical Transistor for Glucose Sensing Using a Ferrocene Mediator , 2009, Sensors.

[5]  D. Williamson,et al.  Projection of the year 2050 burden of diabetes in the US adult population: dynamic modeling of incidence, mortality, and prediabetes prevalence , 2010, Population health metrics.

[6]  Brian A. Gregg,et al.  Excitonic Solar Cells , 2003 .

[7]  J. Reynolds,et al.  Poly(3,4‐ethylenedioxythiophene) and Its Derivatives: Past, Present, and Future , 2000 .

[8]  Robert Forchheimer,et al.  The electrochemical transistor and circuit design considerations , 2005, Proceedings of the 2005 European Conference on Circuit Theory and Design, 2005..

[9]  M. Watanabe,et al.  Characterization of poly(vinylferrocene-co-2-hydroxyethyl methacrylate) for use as electron mediator in enzymatic glucose sensor , 1998 .

[10]  Richard G. Compton,et al.  Electrochemical Non-enzymatic Glucose Sensors: A Perspective and an Evaluation , 2010, International Journal of Electrochemical Science.

[11]  D. Claremont,et al.  Subcutaneous implantation of a ferrocene-mediated glucose sensor in pigs , 1986, Diabetologia.

[12]  D. Bartholomeusz,et al.  Xurography: rapid prototyping of microstructures using a cutting plotter , 2005, Journal of Microelectromechanical Systems.

[13]  Robert Forchheimer,et al.  Electrochemical Logic Circuits , 2005, New Electronics.

[14]  Maria Nikolou,et al.  Applications of poly(3,4-ethylenedioxythiophene) doped with poly(styrene sulfonic acid) transistors in chemical and biological sensors. , 2008, Chemical record.

[15]  Bin Chen,et al.  All-polymer RC filter circuits fabricated with inkjet printing technology , 2003 .

[16]  Senaka K. Kanakamedala,et al.  A simple enzyme based biosensor on flexible plastic substrate , 2010, NanoScience + Engineering.

[17]  George G. Malliaras,et al.  Steady‐State and Transient Behavior of Organic Electrochemical Transistors , 2007 .

[18]  George G. Malliaras,et al.  Enzymatic sensing with organic electrochemical transistors , 2008 .

[19]  Robert Forchheimer,et al.  PEDOT:PSS-Based Electrochemical Transistors for Ion-to-Electron Transduction and Sensor Signal Amplification , 2008 .

[20]  H. Tanaka,et al.  Transparent Image Sensors Using an Organic Multilayer Photodiode , 2006 .

[21]  George G. Malliaras,et al.  Simple glucose sensors with micromolar sensitivity based on organic electrochemical transistors , 2007 .

[22]  R. N. Marks,et al.  Light-emitting diodes based on conjugated polymers , 1990, Nature.

[23]  George G. Malliaras,et al.  An Organic Electronics Primer , 2005 .

[24]  David Nilsson,et al.  Bi-stable and dynamic current modulation in electrochemical organic transistors , 2002 .