iVR: Integrated Vision and Radio Localization with Zero Human Effort

Smartphone localization is essential to a wide range of applications in shopping malls, museums, office buildings, and other public places. Existing solutions relying on radio fingerprints and/or inertial sensors suffer from large location errors and considerable deployment efforts. We observe an opportunity in the recent trend of increasing numbers of security surveillance cameras installed in indoor spaces to overcome these limitations and revisit the problem of smartphone localization with a fresh perspective. However, fusing vision-based and radio-based systems is non-trivial due to the absence of absolute location, incorrespondence of identification and looseness of sensor fusion. This study proposes iVR, an integrated vision and radio localization system that achieves sub-meter accuracy with indoor semantic maps automatically generated from only two surveillance cameras, superior to precedent systems that require manual map construction or plentiful captured images. iVR employs a particle filter to fuse raw estimates from multiple systems, including vision, radio, and inertial sensor systems. By doing so, iVR outputs enhanced accuracy with zero start-up costs, while overcoming the respective drawbacks of each individual sub-system. We implement iVR on commodity smartphones and validate its performance in five different scenarios. The results show that iVR achieves a remarkable localization accuracy of 0.7m, outperforming the state-of-the-art systems by >70%.

[1]  Justin Manweiler,et al.  Satellites in our pockets: an object positioning system using smartphones , 2012, MobiSys '12.

[2]  Demetri Terzopoulos,et al.  Snakes: Active contour models , 2004, International Journal of Computer Vision.

[3]  V. Lepetit,et al.  EPnP: An Accurate O(n) Solution to the PnP Problem , 2009, International Journal of Computer Vision.

[4]  Jun Sun,et al.  Social-Loc: improving indoor localization with social sensing , 2013, SenSys '13.

[5]  Chen Wang,et al.  Low Human-Effort, Device-Free Localization with Fine-Grained Subcarrier Information , 2018, IEEE Transactions on Mobile Computing.

[6]  Philippe C. Cattin,et al.  Tracking the invisible: Learning where the object might be , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[7]  NICHOLAS D. LANE,et al.  Gain Without Pain: Accurate WiFi-based Localization using Fingerprint Spatial Gradient , 2017 .

[8]  Chenshu Wu,et al.  Automatic Radio Map Adaptation for Indoor Localization Using Smartphones , 2018, IEEE Transactions on Mobile Computing.

[9]  Yunhao Liu,et al.  Enhancing wifi-based localization with visual clues , 2015, UbiComp.

[10]  J J Koenderink,et al.  Affine structure from motion. , 1991, Journal of the Optical Society of America. A, Optics and image science.

[11]  Yunhao Liu,et al.  Smartphones Based Crowdsourcing for Indoor Localization , 2015, IEEE Transactions on Mobile Computing.

[12]  Mingyan Liu,et al.  Static power of mobile devices: Self-updating radio maps for wireless indoor localization , 2015, 2015 IEEE Conference on Computer Communications (INFOCOM).

[13]  DAVID G. KENDALL,et al.  Introduction to Mathematical Statistics , 1947, Nature.

[14]  Jie Yang,et al.  Push the limit of WiFi based localization for smartphones , 2012, Mobicom '12.

[15]  Kaigui Bian,et al.  Jigsaw: indoor floor plan reconstruction via mobile crowdsensing , 2014, MobiCom.

[16]  Justin Manweiler,et al.  OverLay: Practical Mobile Augmented Reality , 2015, MobiSys.

[17]  Charless C. Fowlkes,et al.  Globally-optimal greedy algorithms for tracking a variable number of objects , 2011, CVPR 2011.

[18]  Rangachar Kasturi,et al.  Machine vision , 1995 .

[19]  Gérard G. Medioni,et al.  3-D Surface Description from Binocular Stereo , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[20]  Mo Li,et al.  Use it free: instantly knowing your phone attitude , 2014, MobiCom.

[21]  W. A. Ericson Introduction to Mathematical Statistics, 4th Edition , 1972 .

[22]  Ieee Xplore,et al.  IEEE Transactions on Pattern Analysis and Machine Intelligence Information for Authors , 2022, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[23]  J. Lippincott-Schwartz,et al.  Imaging Intracellular Fluorescent Proteins at Nanometer Resolution , 2006, Science.

[24]  Siyuan Cao,et al.  Enabling Public Cameras to Talk to the Public , 2018, Proc. ACM Interact. Mob. Wearable Ubiquitous Technol..

[25]  Xiaochen Liu,et al.  TAR: Enabling Fine-Grained Targeted Advertising in Retail Stores , 2018, MobiSys.

[26]  Jie Xiong,et al.  ArrayTrack: A Fine-Grained Indoor Location System , 2011, NSDI.

[27]  Ross B. Girshick,et al.  Mask R-CNN , 2017, 1703.06870.

[28]  Torsten Sattler,et al.  Fast image-based localization using direct 2D-to-3D matching , 2011, 2011 International Conference on Computer Vision.

[29]  Chenshu Wu,et al.  Gain Without Pain , 2017, Proc. ACM Interact. Mob. Wearable Ubiquitous Technol..

[30]  Mohsen Guizani,et al.  On WiFi Offloading in Heterogeneous Networks: Various Incentives and Trade-Off Strategies , 2016, IEEE Communications Surveys & Tutorials.

[31]  Nando de Freitas,et al.  Sequential Monte Carlo Methods in Practice , 2001, Statistics for Engineering and Information Science.

[32]  Timothy J. Robinson,et al.  Sequential Monte Carlo Methods in Practice , 2003 .

[33]  Yunhao Liu,et al.  Embracing Spatial Awareness for Reliable WiFi-Based Indoor Location Systems , 2018, 2018 IEEE 15th International Conference on Mobile Ad Hoc and Sensor Systems (MASS).

[34]  Robert V. Hogg,et al.  Introduction to Mathematical Statistics. , 1966 .

[35]  Eckehard Steinbach,et al.  Graph-based data fusion of pedometer and WiFi measurements for mobile indoor positioning , 2014, UbiComp.

[36]  Konrad Schindler,et al.  Multi-target tracking by continuous energy minimization , 2011, CVPR 2011.

[37]  Yuan F. Zheng,et al.  EV-Loc: Integrating Electronic and Visual Signals for Accurate Localization , 2014, IEEE/ACM Transactions on Networking.

[38]  Jiming Chen,et al.  Gradient-Based Fingerprinting for Indoor Localization and Tracking , 2016, IEEE Transactions on Industrial Electronics.

[39]  Pietro Perona,et al.  Microsoft COCO: Common Objects in Context , 2014, ECCV.

[40]  Moustafa Youssef,et al.  No need to war-drive: unsupervised indoor localization , 2012, MobiSys '12.

[41]  Sachin Katti,et al.  SpotFi: Decimeter Level Localization Using WiFi , 2015, SIGCOMM.

[42]  Neil D. Lawrence,et al.  WiFi-SLAM Using Gaussian Process Latent Variable Models , 2007, IJCAI.

[43]  Steven M. Seitz,et al.  Photo tourism: exploring photo collections in 3D , 2006, ACM Trans. Graph..

[44]  Rob Miller,et al.  3D Tracking via Body Radio Reflections , 2014, NSDI.

[45]  Agathoniki Trigoni,et al.  Fusion of Radio and Camera Sensor Data for Accurate Indoor Positioning , 2014, 2014 IEEE 11th International Conference on Mobile Ad Hoc and Sensor Systems.

[46]  Yunhao Liu,et al.  On Reliable Task Assignment for Spatial Crowdsourcing , 2019, IEEE Transactions on Emerging Topics in Computing.

[47]  Yunhao Liu,et al.  Pair-Navi: Peer-to-Peer Indoor Navigation with Mobile Visual SLAM , 2019, IEEE INFOCOM 2019 - IEEE Conference on Computer Communications.

[48]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[49]  Alok Aggarwal,et al.  Efficient, generalized indoor WiFi GraphSLAM , 2011, 2011 IEEE International Conference on Robotics and Automation.

[50]  Moustafa Youssef,et al.  SemanticSLAM: Using Environment Landmarks for Unsupervised Indoor Localization , 2016, IEEE Transactions on Mobile Computing.

[51]  Guobin Shen,et al.  BeepBeep: a high accuracy acoustic ranging system using COTS mobile devices , 2007, SenSys '07.

[52]  Mike Hazas,et al.  A Novel Broadband Ultrasonic Location System , 2002, UbiComp.

[53]  Piotr Dollár,et al.  Crosstalk Cascades for Frame-Rate Pedestrian Detection , 2012, ECCV.

[54]  Yunhao Liu,et al.  STPP: Spatial-Temporal Phase Profiling-Based Method for Relative RFID Tag Localization , 2017, IEEE/ACM Transactions on Networking.

[55]  Romit Roy Choudhury,et al.  SurroundSense: mobile phone localization via ambience fingerprinting , 2009, MobiCom '09.

[56]  Yunhao Liu,et al.  Indoor localization via multi-modal sensing on smartphones , 2016, UbiComp.

[57]  Rui Caseiro,et al.  High-Speed Tracking with Kernelized Correlation Filters , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[58]  Junzhou Huang,et al.  Robust tracking using local sparse appearance model and K-selection , 2011, CVPR 2011.

[59]  Luca Bertinetto,et al.  Fully-Convolutional Siamese Networks for Object Tracking , 2016, ECCV Workshops.

[60]  Shueng-Han Gary Chan,et al.  Wi-Fi Fingerprint-Based Indoor Positioning: Recent Advances and Comparisons , 2016, IEEE Communications Surveys & Tutorials.

[61]  Yunhao Liu,et al.  Mobility Increases Localizability , 2015, ACM Comput. Surv..

[62]  Jacques Mccoun,et al.  Binocular Vision: Development, Depth Perception and Disorders , 2010 .

[63]  Guobin Shen,et al.  Epsilon: A Visible Light Based Positioning System , 2014, NSDI.

[64]  Moustafa Youssef,et al.  The Horus location determination system , 2008 .

[65]  Zhaozheng Yin,et al.  Combining passive visual cameras and active IMU sensors for persistent pedestrian tracking , 2017, J. Vis. Commun. Image Represent..

[66]  Yunhao Liu,et al.  Locating in fingerprint space: wireless indoor localization with little human intervention , 2012, Mobicom '12.

[67]  Harold W. Kuhn,et al.  The Hungarian method for the assignment problem , 1955, 50 Years of Integer Programming.

[68]  Anshul Rai,et al.  Zee: zero-effort crowdsourcing for indoor localization , 2012, Mobicom '12.

[69]  Changchang Wu,et al.  Towards Linear-Time Incremental Structure from Motion , 2013, 2013 International Conference on 3D Vision.